Skip to main content
Log in

Smart chiral magnetic nanoparticles for highly efficient enantioseparation of tryptophan enantiomers

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report a simple and facile strategy to prepare one kind of smart chiral magnetic nanoparticles (Fe3O4@PDA@PNG-CD) with high enantioselectivity via combining mussel-inspired polydopamine (PDA) chemistry with surface-initiated atom transfer radical polymerization for effective enantioseparation of tryptophan enantiomers (dl-Trp). The PDA thin layer plays a pivotal role in fabricating high-density poly(N-isopropylacrylamide-co-glycidyl methacrylate)-β-cyclodextrin (PNG-CD) smart polymer brushes onto the Fe3O4 NPs. The grafted PNG-CD plays a significant role in greatly boosting the enantioselectivity of the Fe3O4@PDA@PNG-CD, which is composed of the poly(N-isopropylacrylamide-co-glycidyl methacrylate) (PNG) copolymer chains with numerous appended β-cyclodextrin (β-CD) units. The β-CD units serve as chiral selectors capable of selectively recognizing and binding l-tryptophan (l-Trp) into their cavities by forming stable host–guest inclusion complexes of β-CD/l-Trp, and the PNIPAM chains act as microenvironmental adjustors for the inclusion constants of β-CD/l-Trp complexes. Operating temperature and initial concentrations of dl-Trp are two important factors that significantly affect the separation efficiency of dl-Trp and the enantioselectivity of the Fe3O4@PDA@PNG-CD. Furthermore, the Fe3O4@PDA@PNG-CD also demonstrates satisfactory recycling and excellent magnetic separability from enantiomeric solution. Such smart chiral magnetic NPs with high enantioselectivity developed in this study show great potentials in direct enantioseparation of various chiral compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tao Y, Dai J, Kong Y, Sha Y (2014) Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(l-glutamic acid). Anal Chem 86:2633–2639

    Article  CAS  Google Scholar 

  2. Kasprzyk-Hordern B (2010) Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 39:4466–4503

    Article  CAS  Google Scholar 

  3. Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701

    Article  CAS  Google Scholar 

  4. Hembury GA, Borovkov VV, Inoue Y (2008) Chirality-sensing supramolecular systems. Chem Rev 108:1–73

    Article  CAS  Google Scholar 

  5. Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  Google Scholar 

  6. Maze I, Noh KM, Soshnev AA, Allis CD (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15:259–271

    Article  CAS  Google Scholar 

  7. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  Google Scholar 

  8. Zhao Y, Ashcroft B, Zhang P et al (2014) Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol 9:466–473

    Article  CAS  Google Scholar 

  9. Chen X, Rao J, Wang J, Gooding JJ, Zou G, Zhang Q (2011) A facile enantioseparation for amino acids enantiomers using β-cyclodextrins functionalized Fe3O4 nanospheres. Chem Commun 47:10317–10319

    Article  CAS  Google Scholar 

  10. Yokuş ÖA, Kardaş F, Akyıldırım O, Eren T, Atar N, Yola ML (2016) Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens Actuators B 233:47–54

    Article  Google Scholar 

  11. Butler JS, Woods JA, Farrer NJ, Newton ME, Sadler PJ (2012) Tryptophan switch for a photoactivated platinum anticancer complex. J Am Chem Soc 134:16508–16511

    Article  CAS  Google Scholar 

  12. Kepert I, Fonseca J, Müller C et al (2017) d-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 139:1525–1535

    Article  CAS  Google Scholar 

  13. Tao Y, Gu X, Deng L, Qin Y, Xue H, Kong Y (2015) Chiral recognition of d-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin. J Phys Chem C 119:8183–8190

    Article  CAS  Google Scholar 

  14. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) d-amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  Google Scholar 

  15. Guo D, Huang Y, Chen C, Chen Y, Fu Y (2014) A sensing interface for recognition of tryptophan enantiomers based on porous cluster-like nanocomposite films. New J Chem 38:5880–5885

    Article  CAS  Google Scholar 

  16. Shen J, Okamoto Y (2016) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev 116:1094–1138

    Article  CAS  Google Scholar 

  17. Scriba GKE (2013) Chiral separations: methods and protocols, 2nd edn. Humana Press, London, pp 1–505

    Google Scholar 

  18. Xie R, Chu LY, Deng JG (2008) Membranes and membrane processes for chiral resolution. Chem Soc Rev 37:1243–1263

    Article  CAS  Google Scholar 

  19. Preiss LC, Werber L, Fischer V, Hanif S, Landfester K, Mastai Y, Muñoz-Espí R (2015) Amino-acid-based chiral nanoparticles for enantioselective crystallization. Adv Mater 27:2728–2732

    Article  CAS  Google Scholar 

  20. Vulugundam G, Misra SK, Ostadhossein F, Schwartz-Duval AS, Daza EA, Pan D (2016) (−)/(+)-Sparteine induced chirally-active carbon nanoparticles for enantioselective separation of racemic mixtures. Chem Commun 52:7513–7516

    Article  CAS  Google Scholar 

  21. Li W, Ding GS, Tang AN (2015) Enantiomer separation of propranolol and tryptophan using bovine serum albumin functionalized silica nanoparticles as adsorbents. RSC Adv 5:93850–93857

    Article  CAS  Google Scholar 

  22. Wei Y, Tian A, Li Y, Wang X, Cao B (2012) A general chiral selector immobilized on silica magnetic microspheres for direct separation of racemates. J Mater Chem 22:499–8504

    Google Scholar 

  23. Tarhan T, Tural B, Tural S, Topal G (2015) Enantioseparation of mandelic acid enantiomers with magnetic nanosorbent modified by a chiral selector. Chirality 27:835–842

    Article  CAS  Google Scholar 

  24. Ghosh S, Badruddoza AZM, Uddin MS, Hidajat K (2011) Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J Colloid Interface Sci 354:483–492

    Article  CAS  Google Scholar 

  25. Ghosh S, Fang TH, Uddin MS, Hidajat K (2013) Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles. Colloid Surf B 105:267–277

    Article  CAS  Google Scholar 

  26. Wu J, Su P, Huang J, Wang S, Yang Y (2013) Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds. J Colloid Interface Sci 399:107–114

    Article  CAS  Google Scholar 

  27. Wang H, An X, Deng X, Ding G (2017) Facile synthesis and application of teicoplanin-modified magnetic microparticles for enantioseparation. Electrophoresis 38:1374–1382

    Article  CAS  Google Scholar 

  28. Wu J, Su P, Guo D, Huang J, Yang Y (2014) Cationic β-cyclodextrin-modified hybrid magnetic microspheres as chiral selectors for selective chiral absorption of dansyl amino acids. New J Chem 38:3630–3636

    Article  CAS  Google Scholar 

  29. Huang J, Su P, Wu J, Yang Y (2014) Enantioselective absorption of enantiomers with maleic anhydride-β-cyclodextrin modified magnetic microspheres. RSC Adv 4:58514–58521

    Article  CAS  Google Scholar 

  30. Huang J, Su P, Zhao B, Yang Y (2015) Facile one-pot synthesis of β-cyclodextrin polymer-modified Fe3O4 microspheres for stereoselective absorption of amino acid compounds. Anal Methods 7:2754–2761

    Article  CAS  Google Scholar 

  31. Wang Y, Su P, Wang S, Wu J, Huang J, Yang Y (2013) Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nanoselector for direct separation of racemates. J Mater Chem B 1:5028–5035

    Article  CAS  Google Scholar 

  32. Wu J, Su P, Yang Y, Huang J, Wang Y, Yang Y (2014) Immobilization of HSA on polyamidoamine dendronized magnetic microspheres for application in direct chiral separation of racemates. J Mater Chem B 2:775–782

    Article  CAS  Google Scholar 

  33. Valle EMMD (2004) Cyclodextrins and their uses: a review. Proc Biochem 39:1033–1046

    Article  Google Scholar 

  34. Ward TJ, Ward KD (2012) Chiral separations: a review of current topics and trends. Anal Chem 84:626–635

    Article  CAS  Google Scholar 

  35. Lv SN, Cheng CJ, Song YY, Zhao ZG (2015) Temperature-switched controlled release nanosystems based on molecular recognition and polymer phase transition. RSC Adv 5:3248–3259

    Article  CAS  Google Scholar 

  36. Song YY, Song XD, Yuan H, Cheng CJ (2016) Thermo-responsive adsorption and separation of amino acid enantiomers using smart polymer brush-modified magnetic nanoparticles. New J Chem 40:3194–3207

    Article  CAS  Google Scholar 

  37. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  38. Yang Y, Wang J, Wu F, Ye G, Yi R, Lu Y, Chen J (2016) Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core–shell magnetic nanoparticles for highly-efficient uranium enrichment. Polym Chem 7:2427–2435

    Article  CAS  Google Scholar 

  39. Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8:1402–1409

    Article  CAS  Google Scholar 

  40. Shi JL, Fang LF, Li H, Zhang H, Zhu BK, Zhu LP (2013) Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J Membr Sci 437:160–168

    Article  CAS  Google Scholar 

  41. Zhu B, Edmondson S (2011) Polydopamine–melanin initiators for surface-initiated ATRP. Polymer 52:2141–2149

    Article  CAS  Google Scholar 

  42. Gao J, Ran X, Shi C, Cheng H, Cheng T, Su Y (2013) One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale 5:7026–7033

    Article  CAS  Google Scholar 

  43. Lv SN, Zhao MQ, Cheng CJ, Zhao ZG (2014) β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs. J Nanopart Res 16:2393–2404

    Article  Google Scholar 

  44. Ohashi H, Hiraoka Y, Yamaguchi T (2006) An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property. Macromolecules 39:2614–2620

    Article  CAS  Google Scholar 

  45. Nozaki T, Maeda Y, Ito K, Kitano H (1995) Cyclodextrins modified with polymer chains which are responsive to external stimuli. Macromolecules 28:522–524

    Article  CAS  Google Scholar 

  46. Petter RC, Salek JS, Sikorski CT, Kumaravel G, Lin FT (1990) Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J Am Chem Soc 112:3860–3868

    Article  CAS  Google Scholar 

  47. Liu YY, Fan XD, Gao L (2003) Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol Biosci 3:715–719

    Article  CAS  Google Scholar 

  48. Yang M, Chu LY, Wang HD, Xie R, Song H, Niu CH (2008) A thermoresponsive membrane for chiral resolution. Adv Funct Mater 18:652–663

    Article  Google Scholar 

  49. Guo LD, Song YY, Yu HR, Pan LT, Cheng CJ (2017) Novel smart chiral magnetic microspheres for enantioselective adsorption of tryptophan enantiomers. Appl Surf Sci 407:82–92

    Article  CAS  Google Scholar 

  50. Song YB, Lv SN, Cheng CJ, Ni GL, Xie XW, Huang W, Zhao ZG (2015) Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters. Appl Surf Sci 324:854–863

    Article  CAS  Google Scholar 

  51. Yang M, Chu LY, Xie R, Wang C (2008) Molecular-recognition-induced phase transitions of two thermo-responsive polymers with pendent β-cyclodextrin groups. Macromol Chem Phys 209:204–211

    Article  CAS  Google Scholar 

  52. Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367

    Article  CAS  Google Scholar 

  53. Banerjee SS, Chen DH (2007) Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater 19:6345–6349

    Article  CAS  Google Scholar 

  54. Lv SN, Song YB, Song YY, Zhao ZG, Cheng CJ (2014) Beta-cyclodextrins conjugated magnetic Fe3O4 colloidal nanoclusters for the loading and release of hydrophobic molecule. Appl Surf Sci 305:747–752

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21676219), the Project of Science and Technology department of Sichuan Province (2016GZ0280) and the Fundamental Research Funds for Central Universities, Southwest Minzu University (2017NGJPY03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Jing Cheng, Hai-Rong Yu or Huai-Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HY., Song, XD., Yang, XR. et al. Smart chiral magnetic nanoparticles for highly efficient enantioseparation of tryptophan enantiomers. J Mater Sci 54, 2960–2974 (2019). https://doi.org/10.1007/s10853-018-3072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3072-z

Keywords

Navigation