Skip to main content
Log in

Accurate change of carrier types within ultrathin MoTe2 field-effect transistors with the time exposed to ambient air

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional MoTe2 attracts much attention due to its novel properties; however, the stability limits its application. Here, the electrical stability of ultrathin MoTe2 was systematically researched and the law of how carrier types within MoTe2 change when exposing to air with a long time period of 180 days was obtained. MoTe2 field-effect transistors (FETs) were prepared using mechanical exfoliation and dry transfer technology; then they were exposed to the air. Their electrical behaviors confirm that due to the air adsorption the carrier type within ultrathin MoTe2 gradually changes from initial ambipolar (electron and hole conduction) to the unipolar hole conduction (P type) after 100 days of the air exposure. The mobility of ambipolar MoTe2 FETs shows a non-monotonic law with the time. The electron mobility decreases first, then almost keeps unchanged between 24 and 47 days, since then it quickly drops to near zero. The hole mobility increases with the time and reaches a maximum value at the 47th day; then it reaches a stable value after passing a negligible reduction. This polarity shift can be attributed to the oxygen molecules adsorption, which was further proved by the X-ray photoelectron spectroscopy and the photocurrent response of FETs under ultraviolet illumination. Furthermore, at the 180th day, the device shows unique P-type conductivity and excellent output characteristics, which provides a very convenient method to make unipolar P-type MoTe2 FET from ambipolar MoTe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Radisavljevic B, Radenovic A, Brivio J, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  2. Mao J, Yu Y, Wang L, Zhang X, Wang Y, Shao Z, Jie J (2016) Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv Sci 3:600018

    Article  Google Scholar 

  3. Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S, Wang H, Xia Q, Ma T, Mueller T, Xia F (2016) Black phosphorus mid-infrared photodetectors with high gain. Nano Lett 16:4648–4655

    Article  CAS  Google Scholar 

  4. Huang H, Wang JL, Hu WD, Liao L, Wang P, Wang XD, Gong F, Chen YJ, Wu GJ, Luo WJ, Shen H, Lin T, Sun JL, Meng XJ, Chen XS, Chu JH (2016) Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27:445201

    Article  Google Scholar 

  5. Yin L, Zhan X, Xu K, Wang F, Wang Z, Huang Y, Wang Q, Jiang C, He J (2016) Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl Phys Lett 108:043503

    Article  Google Scholar 

  6. Larentis S, Fallahazad B, Movva HCP, Kim K, Rai A, Taniguchi T, Watanabe K, Banerjee SK, Tutuc E (2017) Reconfigurable complementary monolayer MoTe2 field-effect transistors for intergrated circuits. ACS Nano 11:4832–4839

    Article  CAS  Google Scholar 

  7. Lezama IG, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M, Morpurgo AF (2015) Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett 15:2336–2342

    Article  CAS  Google Scholar 

  8. Zhang Q, Yang S, Mi W, Chen Y, Schwinggenschlogl U (2016) Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv Mater 28:959–966

    Article  CAS  Google Scholar 

  9. Bera A, Singh A, Muthu DVS, Waghmare UV, Sood AK (2017) Pressure-dependent semiconductor to semimetal and lifshitz transitions in 2H-Mote2: Raman and first prrinciples studies. J Phys: Condens Matter 29(10):105403

    Google Scholar 

  10. Wang ZJ, Gresch D, Soluyanov AA, Xie WW, Kushwaha S, Dai X, Troyer M, Cava RJ, Bernevig BA (2016) MoTe2: a type-II wely topological metal. Phys Rev Lett 117:056805

    Article  Google Scholar 

  11. Wood JD, Wells SA, Jariwala D, Chen KS, Cho EK, Sangwan VK, Liu XL, Lauhon LJ, Marks TJ, Hersam MC (2014) Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett 14:6964–6970

    Article  CAS  Google Scholar 

  12. Avsar A, Veramarun IJ, Tan JY, Watanabe K, Taniguchi T, Neto AHC, Ozyilmaz B (2015) Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9:4138–4145

    Article  CAS  Google Scholar 

  13. Chen K, Kiriya D, Hettick M, Tosun M, Ha T, Madhvapath SR, Desai S, Sachid A, Javey A (2014) Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. Apl Mater 2:092504

    Article  Google Scholar 

  14. Wang S, Zhao W, Giustiniano F, Eda G (2016) Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys Chem Chem Phys 18:4304–4309

    Article  CAS  Google Scholar 

  15. Kim JH, Lee J, Kim JH, Hwang CC, Lee C, Park JY (2015) Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules. Appl Phys Lett 106:251606

    Article  Google Scholar 

  16. Li QQ, Chen JC, Feng ZH, Feng LF, Yao DS, Wang SP (2016) The role of air adsorption in inverted ultrathin black phosphorus field-effect transistors. Nanoscale Res Lett 11:521

    Article  Google Scholar 

  17. Lin YF, Xu Y, Wang ST, Li SL, Yamamoto M (2014) Ambipolar MoTe2 transistors and their applications in logic circuits. Adv Mater 26:3263–3269

    Article  CAS  Google Scholar 

  18. Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff RS, Hone J, Yoo WJ (2017) Carrier-type modulation and mobility improvement of thin MoTe2. Adv Mater 29:1606433

    Article  Google Scholar 

  19. Liu JK, Guo N, Xiao XY, Zhang KN, Jia Y, Zhou SY, Wu Y, Li QQ, Xiao L (2017) Pronounced photovoltaic response from multi-layered MoTe2 phototransistor with asymmetric contact form. Nanoscale Res Lett 12:603

    Article  Google Scholar 

  20. Shu N, Mahito Y, Ueno KJ, Lin YF, Li SL, Tsukagoshi K (2015) Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 9:5976–5983

    Article  Google Scholar 

  21. Yang R, Zheng X, Wang Z, Miller C, Feng XL (2014) Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J Vac Sci Technol, B 32:061203

    Article  Google Scholar 

  22. Chen J, Feng Z, Fan S, Shi S, Yue Y, Shen W, Xie Y, Sun C, Liu J, Zhang H, Pang W, Sun D, Feng W, Feng Y, Wu S, Zhang D (2017) Engineering of molybdenum ditelluride field effect transistors through rapid thermal annealing. Acs Appl Mater Interf 9:30107–30114

    Article  CAS  Google Scholar 

  23. Keum DH, Cho S, Kim JH, Choe D, Sung H, Kan M, Kang H, Hwang J, Kim SW, Yang H, Chang KJ, Lee YH (2015) Bandgap opening in few-layered monoclinic MoTe2. Nat Phys 11:482–486

    Article  CAS  Google Scholar 

  24. Chen B, Sahin H, Suslu A, Ding L, Bertoni MI, Peeters FM, Tongay S (2015) Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction. ACS Nano 9:5326–5332

    Article  CAS  Google Scholar 

  25. Wan B, Yang B, Wang Y, Zhang J, Zeng Z, Liu Z, Wang W (2015) Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnol 26:435702

    Article  Google Scholar 

  26. Zhang R, Xie Z, An C, Fan S, Zhang Q, Wu S, Xu L, Hu X, Zhang D, Sun D, Chen J, Liu J (2018) Ultraviolet light-induced persistent and degenerated doping in MoS2 for potential photocontrollable electronics applications. ACS Appl Mater Interfaces 10:27840–27849

    Article  CAS  Google Scholar 

  27. Mahjourisamani M, Liang L, Oyedele A, Kim Y, Tian M, Cross N, Lin M, Boulesbaa A, Rouleau CM, Puretzky AA, Xia K, Eres G, Duscher G, Sumpter BG, Geohegan DB (2016) Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2−x crystals. Nano Lett 16:5213–5220

    Article  CAS  Google Scholar 

  28. Mirabelli G, McGeough C, Schmidt M, McCarthy EK, Monaghan S, Povey IM, McCarthy M, Gity F, Nagle R, Hughes G, Cafolla A, Hurley P, Duffy R (2016) Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J Appl Phys 120:125102

    Article  Google Scholar 

  29. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, p 911

    Google Scholar 

  30. Zhou Y, Reed E (2015) Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules. J Phys Chem C 119:21674–21680

    Article  CAS  Google Scholar 

  31. Iqbal MW, Iqbal MZ, Jin X, Hwang C, Eom J (2014) Edge oxidation effect of chemical vapor deposition grown graphene nanoconstriction. ACS Appl Mater Interfaces 6:4207–4213

    Article  CAS  Google Scholar 

  32. Iqbal MW, Iqbal MZ, Khan MF, Shehzad MA, Seo Y, Eom J (2015) Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors. Nanoscale 7:747–757

    Article  CAS  Google Scholar 

  33. Feng Z, Xie Y, Wu E, Yu Y, Zheng S, Zhang R, Chen X, Sun C, Zhang H, Pang W, Liu J, Zhang D (2017) Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8:155

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Tianjin City, Grant No. 17JCYBJC16200, in part by the National Natural Science Foundation of China, Grant No. DMR-11204209.

Author information

Authors and Affiliations

Authors

Contributions

LF and SP conceived the experiment. SP designed the experiment, SP and RJ performed the measurements. LF analyzed the experimental data. SP and LF drafted the manuscript. All authors discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to L. F. Feng or J. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2018_3071_MOESM1_ESM.pdf

Fig s1: transfer characteristic of FETs with different MoTe2 channels. Fig s2: transfer characteristic at 1st and 100th days of FETs with different MoTe2 channels (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.P., Zhang, R.J., Zhang, L. et al. Accurate change of carrier types within ultrathin MoTe2 field-effect transistors with the time exposed to ambient air. J Mater Sci 54, 3222–3229 (2019). https://doi.org/10.1007/s10853-018-3071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3071-0

Keywords

Navigation