Skip to main content
Log in

Inter-diffusion of plasmonic metals and phase change materials

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the diffusion of metal atoms into phase change chalcogenides, which is problematic because it can destroy resonances in photonic devices. Interfaces between \(\hbox {Ge}_2\hbox {Sb}_2\hbox {Te}_5\) and metal layers were studied using X-ray reflectivity and reflectometry of metal–\(\hbox {Ge}_2\hbox {Sb}_2\hbox {Te}_5\) layered stacks. The diffusion of metal atoms influences the crystallisation temperature and optical properties of phase change materials. When Au, Ag, Al, W structures are directly deposited on \(\hbox {Ge}_2\hbox {Sb}_2\hbox {Te}_5\), inter-diffusion occurs. Indeed, Au reacts with \(\hbox {Ge}_2\hbox {Sb}_2\hbox {Te}_5\) to form a \(\hbox {AuTe}_2\) layer at the interface. Diffusion barrier layers, such as \(\hbox {Si}_3\hbox {N}_4\) or stable plasmonic materials, such as TiN, can prevent the interfacial damage. This work shows that the interfacial diffusion must be considered when designing phase change material-tuned photonic devices, and that TiN is the most suitable plasmonic material to interface directly with \(\hbox {Ge}_2\hbox {Sb}_2\hbox {Te}_5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sreekanth KV, Dong W, Ouyang Q, Sreejith S, El Kabbash M, Lim CT, Strangi G, Yong K-T, Simpson RE, Singh R (2018) Large area silver-stibnite nanoporous plasmonic films for label-free biosensing. ACS Appl Mater Interfaces 10(41):34991–34999

    Article  CAS  Google Scholar 

  2. Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW (2012) Printing colour at the optical diffraction limit. Nat Nano 7(9):557–561

    Article  CAS  Google Scholar 

  3. Cao T, Simpson RE, Cryan MJ (2013) Study of tunable negative index metamaterials based on phase-change materials. J Opt Soc Am B 30(2):439–444

    Article  CAS  Google Scholar 

  4. Weiling D, Yimei Q, Xilin Z, Agnieszka B, Krzysztof B, Breese Mark BH, Tun C, Simpson Robert E (2018) Tunable mid-infrared phase-change metasurface. Opt Mat Adv 6:1701346

    Article  Google Scholar 

  5. Waldecker L, Miller TA, Rudé M, Bertoni R, Osmond J, Pruneri V, Simpson RE, Ernstorfer R, Wall S (2015) Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat Mater 14(10):991

    Article  CAS  Google Scholar 

  6. Loke D, Lee TH, Wang WJ, Shi LP, Zhao R, Yeo YC, Chong TC, Elliott SR (2012) Breaking the speed limits of phase-change memory. Science 336:1566–1569

    Article  CAS  Google Scholar 

  7. Behera JK, Zhou X, Tominaga J, Simpson RE (2017) Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics. Opt Mater Express 7(10):3741–3759

    Article  CAS  Google Scholar 

  8. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6(11):824–832

    Article  CAS  Google Scholar 

  9. Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras LA, Padilla A et al (2010) Phase change memory technology. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 28(2):223–262

    CAS  Google Scholar 

  10. Tun C, Chen-wei W, Simpson Robert E, Lei Z, Cryan Martin J (2014) Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci Rep 4:3955

    Google Scholar 

  11. Cao T, Zhang L, Simpson RE, Cryan MJ (2013) Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J Opt Soc Am B 30(6):1580–1585

    Article  CAS  Google Scholar 

  12. Tittl A, Michel A-KU, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H (2015) A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 27(31):4597–4603

    Article  CAS  Google Scholar 

  13. Hosseini P, Wright CD, Bhaskaran H (2014) An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511(7508):206–211

    Article  CAS  Google Scholar 

  14. Rudé M, Simpson RE, Quidant R, Pruneri V, Renger J (2015) Active control of surface plasmon waveguides with a phase change material. ACS Photon 2(6):669–674

    Article  Google Scholar 

  15. Rios C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright CD, Bhaskaran H, Pernice WHP (2015) Integrated all-photonic non-volatile multi-level memory. Nat Photon 9(11):725–732 11

    Article  CAS  Google Scholar 

  16. Rudé M, Pello J, Simpson RE, Osmond J, Roelkens G, Tol JJGM, Pruneri V (2013) Optical switching at 1.55 \(\mu \) m in silicon racetrack resonators using phase change materials. Appl Phys Lett 103(14):141119

    Article  Google Scholar 

  17. Stegmaier M, Ríos C, Bhaskaran H, Wright CD, Pernice WHP (2017) Nonvolatile all-optical 1 \(\times \) 2 switch for chipscale photonic networks. Adv Opt Mater 5(1):1600346

    Article  Google Scholar 

  18. Raoux S, Cheng HY, Jordan-Sweet JL, Mũoz B, Hitzbleck M (2009) Influence of interfaces and doping on the crystallization temperature of Ge–Sb. Appl Phys Lett 94(18):13–15

    Article  Google Scholar 

  19. Piccione B, Agarwal RR, Jung Y, Agarwal RR (2013) Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires. Philos Mag 93(17):2089–2121

    Article  CAS  Google Scholar 

  20. Pandian R, Kooi BJ, Hosson JTMD (2006) Influence of capping layers on the crystallization of doped \({\rm Sb}_{\rm x}{\rm Te}\) fast-growth phase-change films. J Appl Phys 100(12):123511

    Article  Google Scholar 

  21. Kozyukhin S, Kudoyarova V, Nguyen HP, Smirnov A, Lebedev V (2011) Influence of doping on the structure and optical characteristics of \({\rm Ge}_2{\rm Sb}_{2}{\rm Te}_5\) amorphous films. Phys Status Solidi C 8(9):2688–2691

    Article  CAS  Google Scholar 

  22. Dong W, Krbal M, Kalikka J, Chin XY, Gholipour B, Soci C, Fons P, Mitrofanov KV, Chen L, Simpson RE (2016) Control of Sb\(_2\)S\(_3\) crystallisation by electric field enhanced silver diffusion. Thin Solid Films 616:80–85

    Article  CAS  Google Scholar 

  23. Ohshima N (1996) Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J Appl Phys 79(11):8357

    Article  CAS  Google Scholar 

  24. Cheng H-Y, Raoux S, Munoz B, Jordan-Sweet JL (2009) Influence of interfaces on the crystallization characteristics of \({\rm Ge}_{2}{\rm Sb}_{2}{\rm Te}_{5}\). In: 2009 10th annual non-volatile memory technology symposium (NVMTS), pp 1–6. IEEE

  25. Lu L, Simpson RE, Valiyaveedu SK (2018) Active hyperbolic metamaterials: progress, materials and design. J Opt UK 20(10):103001

    Article  Google Scholar 

  26. Dong W, Liu H, Behera JK, Lu L, Ng RJH, Sreekanth KV, Zhou X, Yang JKW, Simpson RE (2018) Wide band gap phase change material tuned visible photonics. arXiv:1808.06459

  27. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Wiley, Hoboken

    Book  Google Scholar 

  28. Gibaud A, Hazra S (2000) X-ray reflectivity and diffuse scattering. Curr Sci India 78:1467–1477

    CAS  Google Scholar 

  29. Lumerical inc

  30. Palik ED (1997) Handbook of optical constants of solids. Handbook of thermo-optic coefficients of optical materials with applications. Elsevier, Five-Volume Set

  31. Chew LT, Dong W, Liu L, Zhou X, Behera J, Liu H, Sreekanth KV, Mao L, Cao T, Yang J, Simpson RE (2017) Chalcogenide active photonics. In: Active photonic platforms IX, vol 10345, p 103451B. International Society for Optics and Photonics

  32. www.actalab.com. February (2018)

  33. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2(4):478–489

    Article  CAS  Google Scholar 

  34. Wang M, Shim Y, Rais-Zadeh M (2014) A low-loss directly heated two-port rf phase change switch. IEEE Electron Device Lett 35(4):491–493

    Article  CAS  Google Scholar 

  35. Njoroge WK, Wöltgens H-W, Wuttig M (2002) Density changes upon crystallization of \({{\rm Ge}}_{2}{{\rm Sb}}_{2.04}{{\rm Te}}_{4.74}\) films. J Vac Sci Technol A 20(1):230–233 1

    Article  CAS  Google Scholar 

  36. PLUS DIFFRAC (2004) Leptos analytical software for XRD and XRR. Bruker Advanced X-ray Solutions. Google Scholar Ulyanenkov A (2006) Appl Surf Sci 253:106

  37. Ellner M, Kolatschek K, Predel B (1991) On the partial atomic volume and the partial molar enthalpy of aluminium in some phases with Cu and Cu3Au structures. J Less-Common Metals 170(1):171–184

    Article  CAS  Google Scholar 

  38. Reithmayer K, Steurer W, Schulz H, De Boer JL (1993) High-pressure single-crystal structure study on calaverite, aute2. Acta Crystallogr B 49(1):6–11

    Article  Google Scholar 

  39. Jeong TH, Kim MR, Seo H, Park JW, Yeon C (2000) Crystal structure and microstructure of nitrogen-doped \({\rm Ge}_2{\rm Sb}_2{\rm Te}_5\) thin film. Jpn J Appl Phys 39(5R):2775

    Article  CAS  Google Scholar 

  40. Wuttig M, Bhaskaran H, Taubner T (2017) Phase-change materials for non-volatile photonic applications. Nat Photon 11:465–476 08

    Article  CAS  Google Scholar 

  41. Cheng HY, Hsu TH, Raoux S, Wu JY, Du PY, Breitwisch M, Zhu Y, Lai EK, Joseph E, Mittal S et al (2011) A high performance phase change memory with fast switching speed and high temperature retention by engineering the \({\rm Ge}_{\rm x}{\rm Sb}_{\rm y}{\rm Te}_{\rm z}\) phase change material. In: 2011 IEEE International Electron Devices Meeting (IEDM), pp 3–4. IEEE

  42. Simpson RE, Krbal M, Fons P, Kolobov AV, Tominaga J, Uruga T, Tanida H (2009) Toward the ultimate limit of phase change in \({\rm Ge}_2{\rm Sb}_2{\rm Te}_5\). Nano Lett 10(2):414–419

    Article  Google Scholar 

  43. Venugopal VA, Ottaviani G, Bresolin C, Erbetta D, Modelli A, Varesi E (2009) Thermal stability of \({\rm Ge}_2{\rm Sb}_2{\rm Te}_5\) in contact with ti and tin. J Electron Mater 38(10):2063–2068

    Article  CAS  Google Scholar 

  44. Venugopal VA, Ottaviani G, Tonini R, Bersani M (2012) Compatibility study of Ti and \({\rm Ge}_2{\rm Sb}_2{\rm Te}_5\) for phase-change memory applications. Radiat Eff Defects Solids 167(7):487–495

    Article  CAS  Google Scholar 

  45. Alberici SG, Zonca R, Pashmakov B (2004) Ti diffusion in chalcogenides: a ToF-SIMS depth profile characterization approach. Appl Surf Sci 231:821–825

    Article  Google Scholar 

  46. Loubriat S, Muyard D, Fillot F, Roule A, Veillerot M, Barnes JP, Gergaud P, Vandroux L, Verdier M, Maitrejean S (2011) Gete phase change material and ti based electrode: study of thermal stability and adhesion. Microelectron Eng 88(5):817–821

    Article  CAS  Google Scholar 

  47. Park JH, Kim S-W, Kim JH, Ko D-H, Wu Z, Ahn JK, Ahn DH, Lee JM, Kang SB, Choi SY (2016) Phase change memory employing a Ti diffusion barrier for reducing reset current. Thin Solid Films 612:135–140

    Article  CAS  Google Scholar 

  48. Jafari M, Guo LJ, Rais-Zadeh M (2017) An ultra-fast optical shutter exploiting total light absorption in a phase change material. In: Optical components and materials XIV, vol 10100, p 101000I. International Society for Optics and Photonics

  49. Jafari M, Rais-Zadeh M (2017) An ultra-high contrast optical modulator with 30 db isolation at 1.55 \(\mu \text{m}\) with 25 thz bandwidth. In: Photonic fiber and crystal devices: advances in materials and innovations in device applications XI, vol 10382, p 1038211. International Society for Optics and Photonics

  50. Michel A-KU, Chigrin DN, Maß TWW, Schönauer K, Salinga M, Wuttig M, Taubner T (2013) Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett 13(8):3470–3475

    Article  CAS  Google Scholar 

  51. Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner RT, Fritz-Popovski G, Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi MA, Paris O, Hesser G, Heiss W (2011) Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5):3758–3765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the SUTD-MIT international design centre (IDC) with project funding from A-Star (Project Number 1420200046), the Singapore Ministry of Education (MoE) Tier 1 (Project Number T1MOE1703). The work was initiated by a Samsung GRO project. LL, WD, and JB are grateful for their MoE funded SUTD Ph.D. scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Simpson.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Dong, W., Behera, J.K. et al. Inter-diffusion of plasmonic metals and phase change materials. J Mater Sci 54, 2814–2823 (2019). https://doi.org/10.1007/s10853-018-3066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3066-x

Keywords

Navigation