Journal of Materials Science

, Volume 54, Issue 4, pp 3211–3221 | Cite as

A hybrid thermal diode based on phase transition materials

  • J. A. Leon-Gil
  • J. J. Martinez-Flores
  • J. Alvarez-QuintanaEmail author
Electronic materials


Ideally, a thermal rectifier is a device where heat current preferentially flows in one direction, just as the electrical diode works for electrical currents. Herein, we introduce a design of a thermal diode based on the combination of first- and second-order phase transition materials. Validation is realized by a proof-of-concept device consisting of a hybrid composite of neopentylglycol (NPG) and gadolinium (Gd) as the first- and second-order phase transition materials, respectively. Device manipulates the heat via a combined effect of molecular transformations in NPG as well as deactivation of magnons in Gd at the transition and Curie temperatures, respectively. Thermal measurements of the hybrid thermal diode demonstrate a thermal rectification factor of 1.45, which is higher than the value obtained for the reference device based only on NPG. We interpret such enhancement in the thermal rectification factor due to the presence of an asymmetry temperature jump along the heat transfer axis of the device as a consequence of the impact of both phase transitions. Results are corroborated via finite element analysis of the diode by using ANSYS. Hence, such combination of effects has been proved as successful strategy to develop enhanced-performance thermal rectifiers.



This work was supported by the National Council for Science and Technology, Conacyt Mexico, through the grant for fundamental research No. 241597 and national issues No. 1358. Thanks to our research collaborators at GENES group. J.J.M.F. and J.A.L.G thank Conacyt for fellowship.


  1. 1.
    Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31:188–198CrossRefGoogle Scholar
  2. 2.
    Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147–169CrossRefGoogle Scholar
  3. 3.
    Li B, Wang L, Casati G (2006) Negative differential thermal resistance and thermal transistor. Appl Phys Lett 88:143501CrossRefGoogle Scholar
  4. 4.
    Wang L, Li B (2007) Thermal logic gates: computation with phonons. Phys Rev Lett 99:177208CrossRefGoogle Scholar
  5. 5.
    Starr C (1936) The copper oxide rectifier. Physics 7:15–19CrossRefGoogle Scholar
  6. 6.
    Majumdar A, Reddy P (2004) Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl Phys Lett 84:4768–4770CrossRefGoogle Scholar
  7. 7.
    Somers R II, Fletcher L, Flack RD (1987) An explanation of thermal rectification. In: 22nd aerospace sciences meeting, p 398Google Scholar
  8. 8.
    Barber JR, Wright K (1967) The thermal distortion due to a uniform circular heat source on the surface of a semi-infinite solid. Int J Mech Sci 9:811–815CrossRefGoogle Scholar
  9. 9.
    Peyrard M (2006) The design of a thermal rectifier. EPL (Europhys Lett) 76:49CrossRefGoogle Scholar
  10. 10.
    Kobayashi W, Teraoka Y, Terasaki I (2009) An oxide thermal rectifier. Appl Phys Lett 95:171905CrossRefGoogle Scholar
  11. 11.
    Dames C (2009) Solid-state thermal rectification with existing bulk materials. J Heat Transf 131:61301–61307CrossRefGoogle Scholar
  12. 12.
    Li B, Lan J, Wang L (2005) Interface thermal resistance between dissimilar anharmonic lattices. Phys Rev Lett 95:104302CrossRefGoogle Scholar
  13. 13.
    Tovar-Padilla M, Licea-Jimenez L, Pérez-Garcia SA, Alvarez-Quintana J (2015) Enhanced performance thermal diode via thermal boundary resistance at nanoscale. Appl Phys Lett 107:84103CrossRefGoogle Scholar
  14. 14.
    Sadat H, Le Dez V (2016) Thermal rectification in a bilayer wall: coupled radiation and conduction heat transfer. Appl Therm Eng 107:1248–1252CrossRefGoogle Scholar
  15. 15.
    Wang Y, Vallabhaneni A, Hu J et al (2014) Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett 14:592–596CrossRefGoogle Scholar
  16. 16.
    Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95:33107CrossRefGoogle Scholar
  17. 17.
    Ouyang T, Chen Y, Xie Y et al (2010) Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions. Phys Rev B 82:245403CrossRefGoogle Scholar
  18. 18.
    Lee J, Varshney V, Roy AK et al (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496CrossRefGoogle Scholar
  19. 19.
    Jiang JW, Wang JS, Li B (2010) Topology-induced thermal rectification in carbon nanodevice. EPL (Europhys Lett) 89:46005CrossRefGoogle Scholar
  20. 20.
    Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRefGoogle Scholar
  21. 21.
    Yang N, Zhang G, Li B (2008) Carbon nanocone: a promising thermal rectifier. Appl Phys Lett 93:243111CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Chen Y, Xie Y, Zhang S (2016) Transition of thermal rectification in silicon nanocones. Appl Therm Eng 102:1075–1080CrossRefGoogle Scholar
  23. 23.
    Hu B, Yang L (2005) Heat conduction in the Frenkel–Kontorova model. Chaos Interdiscip J Nonlinear Sci 15:15119CrossRefGoogle Scholar
  24. 24.
    Lan J, Wang L, Li B (2007) Interface thermal resistance between Frenkel–Kontorova and Fermi–Pasta–Ulam lattices. Int J Mod Phys B 21:4013–4016CrossRefGoogle Scholar
  25. 25.
    Casati G (2007) The heat is on and off. Nat Nanotechnol 2:23CrossRefGoogle Scholar
  26. 26.
    Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83CrossRefGoogle Scholar
  27. 27.
    Ben-Abdallah P, Biehs S-A (2013) Phase-change radiative thermal diode. Appl Phys Lett 103:191907CrossRefGoogle Scholar
  28. 28.
    Pallecchi E, Chen Z, Fernandes GE et al (2015) A thermal diode and novel implementation in a phase-change material. Mater Horiz 2:125–129CrossRefGoogle Scholar
  29. 29.
    Teng Z, Tengfei L (2015) Giant thermal rectification from polyethylene nanofiber thermal diodes. Small 11:4657–4665CrossRefGoogle Scholar
  30. 30.
    Kenisarin MM (2014) Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol Energy 107:553–575CrossRefGoogle Scholar
  31. 31.
    Cottrill AL, Strano MS (2015) Analysis of thermal diodes enabled by junctions of phase change materials. Adv Energy Mater 5:1500921CrossRefGoogle Scholar
  32. 32.
    Okaz AM, El-Osairy M, Mahmoud NS (1989) Critical behaviour of thermal resistivity of Ni. J Therm Anal 35:121–129CrossRefGoogle Scholar
  33. 33.
    Papp E, Szabó G, Tichy G (1977) Heat diffusivity and heat conductivity of Ni near the Curie point. Solid State Commun 21:487–490CrossRefGoogle Scholar
  34. 34.
    Nakano E, Hirotsu K, Shimada A (1969) The crystal structures of pentaglycerol and neopentylglycol. Bull Chem Soc Jpn 42:3367CrossRefGoogle Scholar
  35. 35.
    Singh H, Talekar A, Chien W-M et al (2015) Continuous solid-state phase transitions in energy storage materials with orientational disorder—computational and experimental approach. Energy 91:334–349CrossRefGoogle Scholar
  36. 36.
    Strauss R, Braun S, Dou S et al (1996) Phase diagram of the orientationally order-disorder binary system 2,2-dimethyl-1,3-propanediol/2,2-dimethyl-1,3-diaminopropane,[(CH3) 2 C (CH2OH) 2] × [(CH3) 2C (CH2NH2) 2] 1 – x. A thermodynamic, X-ray, and 1H-NMR study. Zeitschrift für Naturforsch A 51:871–881Google Scholar
  37. 37.
    Feng H, Liu X, He S et al (2000) Studies on solid–solid phase transitions of polyols by infrared spectroscopy. Thermochim Acta 348:175–179CrossRefGoogle Scholar
  38. 38.
    Lewowski T, Wozniak K (1997) Measurement of Curie temperature for gadolinium: a laboratory experiment for students. Eur J Phys 18:453CrossRefGoogle Scholar
  39. 39.
    Zhang Z-Y, Xu Y-P, Yang M-L (2000) Measurement of the thermal conductivities of neopentylglycol, 1,1,1-trihydroxymethylpropane, and their mixture in the temperature range from 20 °C to their supermelting temperatures. J Chem Eng Data 45:1060–1063CrossRefGoogle Scholar
  40. 40.
    Alvarez-Quintana J, Rodríguez-Viejo J (2008) Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sens Actuators A Phys 142:232–236CrossRefGoogle Scholar
  41. 41.
    Nellis WJ (1968) Thermal conductivity and Lorenz function of gadolinium, terbium, and holmium single crystals. Retrospective theses and dissertations. 4618.
  42. 42.
    Tian W, Yang R (2008) Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput Model Eng Sci 24:123Google Scholar
  43. 43.
    Gong L, Wang Y, Cheng X et al (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación en, Materiales Avanzados S. C. Unidad MonterreyApodacaMexico
  2. 2.Genes-Group of Embedded Nanomaterials for Energy ScavengingCIMAV-Unidad MonterreyApodacaMexico

Personalised recommendations