Abstract
Grain boundary segregation is an important phenomenon for nanocrystalline materials as it influences thermal stability and mechanical properties. While several studies have considered effects of single, intentional segregants, co-segregation of intentional and unintentional segregants to general grain boundaries is not commonly investigated using experimental techniques on the atomic scale. This study utilized aberration-corrected scanning transmission electron microscopy and atom probe tomography to evaluate the grain boundary structure and chemistry of an electroplated and annealed electrodeposited Ni–W alloy. Several phases were observed in the annealed microstructure including elongated nanoscale oxide particles and relatively large impurity carbide phases. Furthermore, grain boundaries regularly exhibited ordered structures, minimal elemental tungsten segregation (intended solute) and impurity carbon segregation (unintentional solute), but moderately high-impurity oxygen segregation (unintentional solute). The unintentional segregated impurities (oxygen and carbon) resulted in a total average grain boundary composition of ~ 10 at.%. The consequence of impurity segregation is discussed in terms of thermal stability and potential mechanical properties.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gleiter H (1990) Nanocrystalline materials. Prog Mater Sci 33:223–315
Koch CC, Scattergood RO, Saber M, Kotan H (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res 28:1785–1791. https://doi.org/10.1557/jmr.2012.429
Weissmuller J (1993) Alloy effects in nanostructures. Nanostructured Mater 3:261–272
Weissmuller J (1994) Alloy thermodynamics in nanostructures. J Mater Res 9:4–7
Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Met 96:1134–1141
Atwater MA, Darling KA (2012) A visual library of stability in binary metallic systems: the stabilization of nanocrystalline grain size by solute addition—part 1. No. ARL-TR-6007. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate
Saber M, Koch C, Scattergood R (2015) Thermodynamic grain size stabilization models: an overview. Mater Res Lett 3:37–41. https://doi.org/10.1080/21663831.2014.997894
Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Thermal stability of nanocrystalline Fe–Zr alloys. Mater Sci Eng, A 527:3572–3580. https://doi.org/10.1016/j.msea.2010.02.043
Darling KA, Chan RN, Wong PZ et al (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scr Mater 59:530–533. https://doi.org/10.1016/j.scriptamat.2008.04.045
Isomäki I, Hämäläinen M, Braga MH, Gasik M (2017) First principles, thermal stability and thermodynamic assessment of the binary Ni–W system. Int J Mater Res 146:1025–1035. https://doi.org/10.3139/146.111557
Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. https://doi.org/10.1126/science.1224737
Chookajorn T, Schuh CA (2014) Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti. Acta Mater 73:128–138. https://doi.org/10.1016/j.actamat.2014.03.039
Kaub T, Thompson GB (2017) Ti segregation in regulating the stress and microstructure evolution in W-Ti nanocrystalline films. J Appl Phys 122:085301. https://doi.org/10.1063/1.4991880
Cai XC, Song J, Yang TT et al (2018) A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength. Mater Lett 210:121–123. https://doi.org/10.1016/j.matlet.2017.09.021
Darnbrough JE, Flewitt PEJ (2014) Growth of abnormal planar faceted grains in nanocrystalline nickel containing impurity sulphur. Acta Mater 79:421–433. https://doi.org/10.1016/j.actamat.2014.05.059
Natter H, Hempelmann R (2003) Tailor-made nanomaterials designed by electrochemical methods. Electrochim Acta 49:51–61. https://doi.org/10.1016/j.electacta.2003.04.004
Tang F, Gianola DS, Moody MP et al (2012) Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater 60:1038–1047. https://doi.org/10.1016/j.actamat.2011.10.061
Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510. https://doi.org/10.1063/1.4821040
Xing W, Kalidindi AR, Schuh CA (2017) Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr Mater 127:136–140. https://doi.org/10.1016/j.scriptamat.2016.09.014
Liang T, Chen Z, Yang X et al (2017) The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys. Int J Mat Res 108:435–440
Huang Z, Chen F, Shen Q, et al (2018) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength. arXiv:1809.02217
Kapoor M, Kaub T, Darling KA et al (2017) An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu–Nb. Acta Mater 126:564–575. https://doi.org/10.1016/j.actamat.2016.12.057
Choi I, Detor A, Schwaiger R et al (2008) Mechanics of indentation of plastically graded materials—II: experiments on nanocrystalline alloys with grain size gradients. J Mech Phys Solids 56:172–183. https://doi.org/10.1016/j.jmps.2007.07.006
Detor A, Schuh C (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248. https://doi.org/10.1557/JMR.2007.0403
Detor A, Schuh CA (2007) Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:371–379. https://doi.org/10.1016/j.actamat.2006.08.032
Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232. https://doi.org/10.1016/j.actamat.2007.03.024
Detor A, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Philos Mag Lett 87:581–587. https://doi.org/10.1080/09500830701400125
Detor A, Miller M, Schuh C (2006) Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos Mag 86:4459–4475. https://doi.org/10.1080/14786430600726749
Cury R, Joubert JM, Tusseau-Nenez S et al (2009) On the existence and the crystal structure of Ni4W, NiW, and NiW2 compounds. Intermetallics 17:174–178
Borgia C, Scharowsky T, Furrer A et al (2011) A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni–W alloy thin films. Acta Mater 59:386–399. https://doi.org/10.1016/j.actamat.2010.09.045
Marvel CJ, Cantwell PR, Harmer MP (2015) The critical influence of carbon on the thermal stability of nanocrystalline Ni–W alloys. Scr Mater 96:45–48. https://doi.org/10.1016/j.scriptamat.2014.10.022
Marvel CJ, Yin D, Cantwell PR, Harmer MP (2016) The influence of oxygen contamination on the thermal stability and hardness of nanocrystalline Ni–W alloys. Mater Sci Eng, A 664:49–57. https://doi.org/10.1016/j.msea.2016.03.129
Juškėnas R, Valsiūnas I, Pakštas V, Giraitis R (2009) On the state of W in electrodeposited Ni–W alloys. Electrochim Acta 54:2616–2620. https://doi.org/10.1016/j.electacta.2008.10.060
Yamasaki T, Schlobmacher P, Ehrlich K, Ogino Y (1998) Formation of amorphous electrodeposited Ni–W alloys and their nanocrystallization. Nanostructured Mater 10:375–388
Gammer C, Mangler C, Rentenberger C, Karnthaler HP (2010) Quantitative local profile analysis of nanomaterials by electron diffraction. Scr Mater 63:312–315. https://doi.org/10.1016/j.scriptamat.2010.04.019
Mishra NS, Ranganathan S (1995) Electron microscopy and diffraction of ordering in Ni4W alloys. Acta Metall Mater 43:2287–2302. https://doi.org/10.1016/0956-7151(94)00417-X
Mishra NS, Ranganathan S (1992) Electron microscopy and diffraction of ordering in an off-stoichiometric Ni–W alloy. Scr Metall 27:1337–1342
Zhou X, Yu X, Kaub T et al (2016) Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci Rep 6:34642. https://doi.org/10.1038/srep34642
Trelewicz J, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112. https://doi.org/10.1103/PhysRevB.79.094112
Abdeljawad F, Foiles SM (2015) Stabilization of nanocrystalline alloys via grain boundary segregation: a diffuse interface model. Acta Mater 101:159–171. https://doi.org/10.1016/j.actamat.2015.07.058
Abdeljawad F, Lu P, Argibay N et al (2017) Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater 126:528–539. https://doi.org/10.1016/j.actamat.2016.12.036
Li L, Xu W, Saber M et al (2015) Materials Science & Engineering A Long-term stability of 14YT–4Sc alloy at high temperature. Mater Sci Eng, A 647:222–228. https://doi.org/10.1016/j.msea.2015.09.012
Shahbeigi Roodposhti P, Saber M, Koch C et al (2017) Effect of oxygen content on thermal stability of grain size for nanocrystalline Fe10Cr and Fe14Cr4Hf alloy powders. J Alloys Compd 720:510–520. https://doi.org/10.1016/j.jallcom.2017.05.261
Xu WZ, Li LL, Saber M et al (2014) Nano ZrO 2 particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders. J Nucl Mater 452:434–439. https://doi.org/10.1016/j.jnucmat.2014.05.067
Yin D, Marvel CJ, Cui FY et al (2018) Microstructure and fracture toughness of electrodeposited Ni-21 at.% W alloy thick films. Acta Mater 143:272–280. https://doi.org/10.1016/j.actamat.2017.10.001
Cao W, Marvel CJ, Yin D et al (2016) Correlations between microstructure, fracture morphology, and fracture toughness of nanocrystalline Ni–W alloys. Scr Mater 113:84–88. https://doi.org/10.1016/j.scriptamat.2015.09.030
Janisch R, Elsässer C (2003) Segregated light elements at grain boundaries in niobium and molybdenum. Phys Rev B - Condens Matter Mater Phys 67:1–11. https://doi.org/10.1103/PhysRevB.67.224101
Zhang P, Zou T, Zheng Z, Zhao J (2015) Effect of interstitial impurities on grain boundary cohesive strength in vanadium. Comput Mater Sci 110:163–168. https://doi.org/10.1016/j.commatsci.2015.08.028
Huang Z, Chen F, Shen Q et al (2018) Uncovering the influence of common nonmetallic impurities on the stability and strength of a Σ5 (310) grain boundary in Cu. Acta Mater 148:110–122. https://doi.org/10.1016/j.actamat.2018.01.058
Aksyonov DA, Hickel T, Lipnitskii AG, Neugebauer J (2016) The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation. J Phys: Condens Matter 385001:1–23. https://doi.org/10.1088/0953-8984/28/38/385001
Acknowledgements
The authors thank Jian Luo and Yuanyao Zhang (University of California,San Diego) for electroplating the Ni–W alloys. The authors are also grateful for financial support from the Office of Naval Research (Grant No. N00014-11-0678) and institutional support from the Army Research Laboratory.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declared that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Marvel, C.J., Hornbuckle, B.C., Darling, K.A. et al. Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy. J Mater Sci 54, 3496–3508 (2019). https://doi.org/10.1007/s10853-018-3056-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-018-3056-z