Skip to main content
Log in

The analysis of magnetic entropy change and long-range ferromagnetic order in Mn1−xAgxCoGe

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MnCoGe alloy is a promising candidate for room-temperature magnetic refrigeration applications, and the magnetocaloric effect in this family has a close relationship with the nature of phase transition. In this work, we presented a systematic study focusing on the phase transition, magnetic entropy change, and magnetic interaction in four compositions. The Banerjee criterion, Landau theory, and universal behavior were performed to distinguish the characteristic of second-order transition. It is found that the theoretical magnetic entropy changes based on Landau theory are in good agreement with the experimental findings, indicating the reliability of this method to evaluate magnetocaloric property. Moreover, the fitting parameters determined from the rescaled magnetic entropy change curves and field dependence of magnetic entropy change are used to give a better understanding of phase transition and magnetic refrigerant performance. Reliable critical exponents from three techniques suggest long-range magnetic couplings in this system. Additionally, the differences in critical behavior with Ag substitution are described by calculation of density of the effective exponents (βeff and γeff) and exchange distance J(r). The very stable nature of phase transition and abundant availability make this system suitable for thermomagnetic power generation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Si Y, Liu J, Gong YY, Yuan SY, Peng G, Xu GZ, Xu F (2018) Magnetostructural transformation and magnetocaloric effect of Sn-bonded Mn0.66Fe0.34Ni0.66Fe0.34Si0.66Ge0.34 composite. Sci Rep 8:19. https://doi.org/10.1038/s41598-017-18240-x

    Article  CAS  Google Scholar 

  2. Pandey S, Quetz A, Aryal A, Dubenko I, Samanta T, Mazumdar D, Stadler S, Ali N (2017) The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni–Mn–In Heusler alloys. AIP Adv 6:056213. https://doi.org/10.1063/1.4943763

    Article  CAS  Google Scholar 

  3. Si XD, Liu YS, Shen YL, Yu WY, Ma XX, Zhang ZX, Xu Y, Gao T (2018) Magnetocaloric effect in Mn1−xCoGeSix alloys. J Mater Sci 53:3661–3671. https://doi.org/10.1007/s10853-017-1783-1

    Article  CAS  Google Scholar 

  4. Lai JW, Zheng ZG, Huang BW, Yu HY, Qiu ZG, Mao YL, Zhang S, Xiao FM, Zeng DC, Goubitz K, Brück E (2018) Microstructure formation and magnetocaloric effect of the Fe2P-type phase in (Mn, Fe)2(P, Si, B) alloys. J Alloy Compd 735:2567–2573

    Article  CAS  Google Scholar 

  5. Dubenko I, Quetz A, Pandey S, Aryal A, Eubank M, Rodionov I, Prudnikov V, Granovsky A, Lahderanta E, Samanta T, Saleheen A, Stadler S, Ali N (2015) Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J Magn Magn Mater 383:186–189

    Article  CAS  Google Scholar 

  6. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497. https://doi.org/10.1103/PhysRevLett.78.4494

    Article  CAS  Google Scholar 

  7. Wada H, Takahara T, Katagiri K, Ohnishi T, Soejima K, Yamashita K (2015) Recent progress of magnetocaloric effect and magnetic refrigerant materials of Mn compounds. J Appl Phys 117:172606. https://doi.org/10.1063/1.4914120

    Article  CAS  Google Scholar 

  8. Yamada H, Goto T (2003) Itinerant-electron metamagnetism and giant magnetocaloric effect. Phys Rev B 68:184417. https://doi.org/10.1103/PhysRevB.68.184417

    Article  CAS  Google Scholar 

  9. Hu FX, Shen BG, Sun JR, Cheng ZH, Rao GH, Zhang XX (2001) Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett 78:3675–3677. https://doi.org/10.1063/1.1375836

    Article  CAS  Google Scholar 

  10. Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x) compounds and their hydrides. Phys Rev B 67:104416. https://doi.org/10.1103/PhysRevB.67.104416

    Article  CAS  Google Scholar 

  11. Pandey S, Quetz A, Aryal A, Dubenko I, Blinov M, Rodionov I, Prudnikov V, Mazumdar D, Granovsky A, Stadler S, Ali N (2017) Giant field-induced adiabatic temperature changes in In-based off-stoichiometric Heusler alloys. J Appl Phys 121:133901. https://doi.org/10.1063/1.4979475

    Article  CAS  Google Scholar 

  12. Cong DY, Zhang YD, Esling C, Wang YD, Lecomte JS, Zhao X, Zuo L (2011) Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater 59:7070–7081

    Article  CAS  Google Scholar 

  13. Chen JH, Bruno NM, Ning ZH, Shelton WA, Karaman I, Huang YJ, Li JG, Ross JH Jr (2018) Relative cooling power enhancement by tuning magneto-structural stability in Ni–Mn–In Heusler alloys. J Alloy Compd 744:785–790

    Article  CAS  Google Scholar 

  14. Pandey S, Quetz A, Rodionov ID, Aryal A, Blinov MI, Titov IS, Prudnikov VN, Granovsky AB, Dubenko I, Stadler S, Ali N (2015) Magnetic, transport, and magnetocaloric properties of boron doped Ni–Mn–In alloys. J Appl Phys 117:183905. https://doi.org/10.1063/1.4921052

    Article  CAS  Google Scholar 

  15. Nizioł S, Wesełucha A, Bazela W, Szytuła A (1981) Magnetic properties of the CoxNi1−xMnGe system. Solid State Commun 39:1081–1085

    Article  Google Scholar 

  16. Meng GH, Tegus O, Zhang WG, Song L, Huang JH (2010) Structural and magnetic properties of MnCo1−xVxGe compounds. J Alloy Compd 497:14–16

    Article  CAS  Google Scholar 

  17. Trung NT, Zhang L, Caron L, Buschow KHJ, Brück E (2010) Giant magnetocaloric effects by tailoring the phase transitions. Appl Phys Lett 96:172504. https://doi.org/10.1063/1.3399773

    Article  CAS  Google Scholar 

  18. Fang YK, Yeh JC, Chang WC, Li XM, Li W (2009) Structures, magnetic properties, and magnetocaloric effect in MnCo1−xGe (0.02 ≤ x ≤ 0.2) compounds. J Magn Magn Mater 321:3053–3056. https://doi.org/10.1016/j.jmmm.2009.05.006

    Article  CAS  Google Scholar 

  19. Liu J, Skokova K, Gutfleisch O (2012) Magnetostructural transition and adiabatic temperature change in Mn–Co–Ge magnetic refrigerants. Scr Mater 66:584–589

    Article  Google Scholar 

  20. Shamba P, Wang JL, Debnath JC, Zeng R, Hong F, Cheng ZX, Studer AJ, Kennedy SJ, Dou SX (2013) On the crystal structure and magnetic properties of the Mn0.94Ti0.06CoGe alloy. J Appl Phys 113:17A941. https://doi.org/10.1063/1.4801523

    Article  CAS  Google Scholar 

  21. Liu K, Ma SC, Zhang L, Huang YL, Hou YH, Zhang GQ, Fan WB, Wang YL, Wang Y, Cao J, Guo KX, Zhong ZC (2017) Tuning the magnetic transition and magnetocaloric effect in Mn1−xCrxCoGe alloy ribbons. J Alloy Compd 690:663–668

    Article  CAS  Google Scholar 

  22. Caron L, Trung NT, Bruck E (2011) Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe. Phys Rev B 84:020414. https://doi.org/10.1103/PhysRevB.84.020414

    Article  CAS  Google Scholar 

  23. Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG (2015) Giant barocaloric effect in hexagonal Ni2In-type Mn–Co–Ge–In compounds around room temperature. Sci Rep 5:18027. https://doi.org/10.1038/srep18027

    Article  CAS  Google Scholar 

  24. Bonilla CM, Herrero-Albillos J, Bartolomé F, García LM, Parra-Borderías M, Franco V (2010) Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions. Phys Rev B 81:224424. https://doi.org/10.1103/PhysRevB.81.224424

    Article  CAS  Google Scholar 

  25. Debnath JC, Strydom AM, Shamba P, Wang JL, Dou SX (2013) Critical phenomena and estimation of the spontaneous magnetization by a magnetic entropy analysis in Mn0.96Nb0.04CoGe alloy. J Appl Phys 113:233903. https://doi.org/10.1063/1.4811342

    Article  CAS  Google Scholar 

  26. Kuz’min MD, Richter M, Tishin AM (2009) Field dependence of magnetic entropy change: whence comes an intercept? J Magn Magn Mater 321:L1–L3

    Article  Google Scholar 

  27. Dhahri Ah, Jemmali M, Dhahri E, Valente MA (2015) Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15MnO3 compound. J Alloy Compd 638:221–227

    Article  CAS  Google Scholar 

  28. Si XD, Liu YS, Lu XF, Shen YL, Wang WL, Yu WY, Zhou T, Gao T (2017) Near room temperature magnetocaloric properties and the universal curve of MnCoGe1−xCux. J Appl Phys 121:185103. https://doi.org/10.1063/1.4983075

    Article  CAS  Google Scholar 

  29. Si XD, Liu YS, Shen YL, Yu WY, Ma XX, Zhang ZX, Xu Y, Gao T (2018) Critical behavior and magnetocaloric effect near room temperature in MnCo1−xTixGe alloys. Intermetallics 93:30–39

    Article  CAS  Google Scholar 

  30. Si XD, Shen YL, Ma XX, Chen SJ, Lin J, Yang J, Gao T, Liu YS (2018) Field dependence of magnetic entropy change and estimation of spontaneous magnetization in Cd substituted MnCoGe. Acta Mater 143:306–317

    Article  CAS  Google Scholar 

  31. Li GJ, Liu EK, Zhang HG, Zhang YJ, Chen JL, Wang WH, Zhang HW, Wu GH, Yu SY (2013) Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys. J Magn Magn Mater 332:146–150

    Article  CAS  Google Scholar 

  32. Samanta T, Dubenko I, Quetz A, Stadler S, Ali N (2012) Giant magnetocaloric effects near room temperature in Mn1−xCuxCoGe. Appl Phys Lett 101:242405. https://doi.org/10.1063/1.4770379

    Article  CAS  Google Scholar 

  33. Si XD, Liu YS, Lu XF, Wang WL, Lei W, Lin J, Zhou T, Xu Y (2016) Effects of the substitution of Al for Mn on structure, magnetic, and magnetocaloric properties in MnCoGe. J Appl Phys 119:215104. https://doi.org/10.1063/1.4949492

    Article  CAS  Google Scholar 

  34. Cao GX, Subedi A, Calder S, Yan JQ, Yi JY, Gai Z, Poudel L, Singh DJ, Lumsden MD, Christianson AD, Sales BC, Mandrus D (2013) Magnetism and electronic structure of La2ZnIrO6 and La2MgIrO6: candidate Jeff = 1/2 Mott insulators. Phys Rev B 87:155136. https://doi.org/10.1103/PhysRevB.87.155136

    Article  CAS  Google Scholar 

  35. Bao LF, Hu FX, Wu RR, Wang J, Chen L, Sun JR, Shen BG, Li L, Zhang B, Zhang XX (2014) Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1−xAlx compounds. J Phys D Appl Phys 47:055003. https://doi.org/10.1088/0022-3727/47/5/055003

    Article  CAS  Google Scholar 

  36. Chen X, Ramanujan RV (2015) Large magnetocaloric effect near room temperature in Mn–Fe–P–Ge nanostructured powders. J Alloy Compd 652:393–399

    Article  CAS  Google Scholar 

  37. Lai JW, Zheng ZG, Montemayor R, Zhong XC, Liu ZW, Zeng DC (2014) Magnetic phase transitions and magnetocaloric effect of MnCoGe1−xSix. J Magn Magn Mater 372:86–90

    Article  CAS  Google Scholar 

  38. Si XD, Zhou KY, Zhang R, Qi J, Liu YS (2017) Room-temperature magnetocaloric properties and universal curve of MnCo1−xSnxGe. Phys Lett A 381:2850–2855

    Article  CAS  Google Scholar 

  39. Ren QY, Hutchison WD, Wang JL, Studer AJ, Md Din MF, Pérez SM, Cadogan JM, Campbell SJ (2016) The magneto-structural transition in Mn1−xFexCoGe. J Phys D Appl Phys 49:175003. https://doi.org/10.1088/0022-3727/49/17/175003

    Article  CAS  Google Scholar 

  40. Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Hill M, Mazumdar D, Stadler S, Ali N (2017) Magnetostructural phase transitions and magnetocaloric effects in as-cast Mn1−xAlxCoGe compounds. J Alloy Compd 709:142–146

    Article  CAS  Google Scholar 

  41. Aryal A, Quetz A, Pandey S, Dubenko I, Stadler S, Ali N (2017) Phase transitions and magnetocaloric properties in MnCo1−xZrxGe compounds. Adv Condens Matter Phys 2017:2683789. https://doi.org/10.1155/2017/2683789

    Article  CAS  Google Scholar 

  42. Aryal A, Pandey S, Dubenko I, Stadler S, Ali N (2018) Magnetostructural phase transitions and magnetocaloric properties in Ag doped Mn1−xAgxCoGe compounds. ICM2018 H6-07:248–249

    Google Scholar 

  43. Zheng TF, Shi YG, Hu CC, Fan JY, Shi DN, Tang SL, Du YW (2012) Magnetocaloric effect and transition order of Mn5Ge3 ribbons. J Magn Magn Mater 324:4102–4105

    Article  CAS  Google Scholar 

  44. Bonilla C, Bartolomé MF, García LM, Parra-Borderías M, Herrero-Albillos J, Franco V (2010) A new criterion to distinguish the order of magnetic transitions by means of magnetic measurements. J Appl Phys 107:09E131. https://doi.org/10.1063/1.3366614

    Article  CAS  Google Scholar 

  45. Yu B, Sun WF, Fan JY, Lan XF, Zhang WC, Zhu Y, Han H, Zhang L, Ling LS, Yang H (2018) Scaling study of magnetic phase transition and critical behavior in Nd0.55Sr0.45Mn0.98Ga0.02O3 manganite. Mater Res Bull 99:393–397

    Article  CAS  Google Scholar 

  46. Phong PT, Ngan LTT, Bau LV, Nam PH, Linh PH, Dang NV, Lee IJ (2017) Study of critical behavior using the field dependence of magnetic entropy change in La0.7Sr0.3Mn1−xCuxO3 (x = 0.02 and 0.04). Ceram Int 43:16859–16865

    Article  CAS  Google Scholar 

  47. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, New York

    Google Scholar 

  48. Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its Curie point. Phys Rev 136:1626–1632

    Article  CAS  Google Scholar 

  49. Baaziz H, Tozri A, Dhahri E, Hlil EK (2018) Influence of grain size and sintering temperature grain size on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.67Sr0.33MnO3 nanoparticles. J Magn Magn Mater 449:207–213

    Article  CAS  Google Scholar 

  50. Kaul SN (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magn Magn Mater 53:5–53

    Article  CAS  Google Scholar 

  51. Si XD, Zhou KY, Zhang R, Liu YS, Qi J (2017) Estimation of the spontaneous magnetization and the universal curve in MnCo1−xNbxGe alloys with long-range interactions. J Appl Phys 121:113902. https://doi.org/10.1063/1.4978605

    Article  CAS  Google Scholar 

  52. Kang KH, Kim JH, Oh Y, Kim EJ, Yoon CS (2017) Critical behavior and magnetocaloric effect of Mn4.75Ge3(Co, Fe)0.25 alloys. J Alloy Compd 696:931–937

    Article  CAS  Google Scholar 

  53. Zheng TF, Shi YG, Fan JY, Shi DN, Tang SL, Lv LY, Zhong W (2013) Critical behavior and the universal curve for magnetocaloric effect in textured Mn5Ge3−xAlx ribbons. J Appl Phys 113:17A944. https://doi.org/10.1063/1.4801744

    Article  CAS  Google Scholar 

  54. Xu LS, Fan JY, Shi YG, Zhu Y, Bärner K, Yang CP, Shi DN (2015) Critical behavior and long-range ferromagnetic order in perovskite manganite Nd0.55Sr0.45MnO3. EPL 112:17005. https://doi.org/10.1209/0295-5075/112/17005

    Article  CAS  Google Scholar 

  55. Liu Y, Petrovic C (2018) Three-dimensional magnetic critical behavior in CrI3. Phys Rev B 97:014420. https://doi.org/10.1103/PhysRevB.97.014420

    Article  Google Scholar 

  56. Lyubina J, Kuz’min MD, Nenkov K, Gutfleisch O, Richter M, Schlagel DL, Lograsso TA, Gschneidner KA Jr (2011) Magnetic field dependence of the maximum magnetic entropy change. Phys Rev B 83:012403. https://doi.org/10.1103/PhysRevB.83.01240

    Article  Google Scholar 

  57. Kaeswurm B, Friemert K, Gürsoy M, Skokov KP, Gutfleisch O (2016) Direct measurement of the magnetocaloric effect in cementite. J Magn Magn Mater 410:105–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Nos. 11674215, 11374204, 61875119), “ShuGuang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 13SG52), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, X., Liu, Y., Ma, X. et al. The analysis of magnetic entropy change and long-range ferromagnetic order in Mn1−xAgxCoGe. J Mater Sci 54, 3196–3210 (2019). https://doi.org/10.1007/s10853-018-3053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3053-2

Keywords

Navigation