Skip to main content
Log in

Realizing high-responsive superlattice organic photodiodes by C60 and zinc phthalocyanine

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic superlattices, consisting of alternating thin films of different organic molecules, are expected to provide new molecule assembly and unique properties that are applicable to advanced optoelectronic devices. Adopting organic superlattice as the structure of active layer may be an appropriate trade-off between planar heterojunctions and bulk heterojunction. With this structure, exciton diffusion efficiency and carrier mobility can be appropriately improved at the same time, leading to the optimization of device performance. In this paper, superlattice organic photodiodes based on heterojunction composed of C60 and zinc phthalocyanine were fabricated and characterized. We demonstrate good optoelectronic properties of these devices with superlattice structure through experimental data. It is found that the performances of the devices are strongly dependent on the incident optical power and the number of heterojunction periods, n. We optimized n and obtained high-responsive devices. The SL-OPD with n = 3 exhibits the photoresponsivity up to 5.21 (± 0.26) A W−1 at the incident optical intensity of 0.068 (± 0.003) mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yao B, Zhou X, Ye X, Zhang J, Yang D, Ma D, Wan X (2015) 2,1,3-Benzothiadiazole-5,6-dicarboxylic imide based low-bandgap polymers for solution processed photodiode application. Org Electron 26:305–313

    Article  CAS  Google Scholar 

  2. Kim IK, Li X, Ullah M, Shaw PE, Wawrzinek R, Namdas EB, Lo S-C (2015) High-performance, fullerene-free organic photodiodes based on a solution-processable indigo. Adv Mater 27:6390–6395

    Article  CAS  Google Scholar 

  3. Zhang L, Yang T, Shen L, Fang Y, Dang L, Zhou N, Guo X, Hong Z, Yang Y, Wu H, Huang J, Liang Y (2015) Toward highly sensitive polymer photodetectors by molecular engineering. Adv Mater 27:6496–6503

    Article  CAS  Google Scholar 

  4. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174

    Article  CAS  Google Scholar 

  5. Jianchang W, Ma Y, Na W, Lin Y, Lin J, Wang L, Ma C-Q (2015) 2,2-Dicyanovinyl-end-capped oligothiophenes as electron acceptor in solution processed bulk-heterojunction organic solar cells. Org Electron 23:28–38

    Article  Google Scholar 

  6. Falco A et al (2015) Spray deposition of Polyethylenimine thin films for the fabrication of fully-sprayed organic photodiodes. Org Electron 23:186–192

    Article  CAS  Google Scholar 

  7. Pierre A, Deckman I, Lechene PB, Arias AC (2015) High detectivity all-printed organic photodiodes. Adv Mater 27:6411

    Article  CAS  Google Scholar 

  8. Bellani S, Iacchetti A, Porro M, Beverina L, Antognazza MR, Natali D (2015) Charge transport characterization in a squaraine-based photodetector by means of admittance spectroscopy. Org Electron 22:56–61

    Article  CAS  Google Scholar 

  9. Büchele P, Morana M, Bagnis D, Tedde SF, Hartmann D, Fischer R, Schmidt O (2015) Space charge region effects in bidirectional illuminated P3HT:PCBM bulk heterojunction photodetectors. Org Electron 22:29–34

    Article  Google Scholar 

  10. Shen L, Fang Y, Dong Q, Xiao Z, Huang J (2015) Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection. Appl Phys Lett 106:023301. https://doi.org/10.1063/1.4905930

    Article  CAS  Google Scholar 

  11. Ai N, Zhou Y, Zheng Y, Chen H, Wang J, Pei J, Cao Y (2013) Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering. Org Electron 14(4):1103–1108

    Article  CAS  Google Scholar 

  12. Rim YS, Yang YM, Bae SH, Chen H, Li C, Goorsky MS, Yang Y (2015) Ultrahigh and broad spectral photodetectivity of an organic-inorganic hybrid phototransistor for flexible electronics. Adv Mater 27(43):6885–6891

    Article  CAS  Google Scholar 

  13. Leem D-S, Lee K-H, Kwon Y-N, Yun D-J, Park K-B, Lim S-J, Kim K-S, Jin YW, Lee S (2015) Low dark current inverted organic photodetectors employing MoOx: Al cathode interlayer. Org Electron 24:176–181

    Article  CAS  Google Scholar 

  14. Luo X, Wen Z, Lili D, Lv W, Zhao F, Tang Y, Chen Z, Peng Y (2016) Notably improved red photoresponse of organic diode employing gold nanoparticles plasmonic absorption. J Nanosci Nanotechnol 16(6):707–5713

    Google Scholar 

  15. Luo X, Lv W, Lili D, Zhao F, Peng Y, Tang Y, Wang Y (2016) Insight into trap state dynamics for exploiting current multiplication in organic photodetectors. Phys Status Solidi RRL 10(6):485–492

    Article  CAS  Google Scholar 

  16. Lv W, Peng Y, Zhong J, Luo X, Li Y, Zheng T, Tang Y, Du L, Peng L et al (2015) Realizing near infrared sensitive organic photodiodes exploiting exciplex absorption in heterojunctions consisting of neodymium phthalocyanine and C60. IEEE Photonics Technol Lett 27(9):2043–2046

    Article  CAS  Google Scholar 

  17. Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang H, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao Z (2015) Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv Mater 27(4):759–765

    Article  CAS  Google Scholar 

  18. Luo X, Du L, Lv W, Sun L, Li Y, Peng Y, Zhao F, Zhang J, Tang Y, Wang Y (2015) Charge-transport interfacial modification enhanced ultraviolet (UV)/near-UV photodetector with high sensitivity and fast response speed. Synth Metal 210:230–235

    Article  CAS  Google Scholar 

  19. Wang X, Zhou D, Huang J, Junsheng Y (2015) High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter. Appl Phys Lett 107:043303

    Article  Google Scholar 

  20. Hafez HA et al (2015) Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Phys Rev B 91(3):035422

    Article  Google Scholar 

  21. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61

    Article  CAS  Google Scholar 

  22. Steveler E, Verdun M, Portier B, Chevalier P, Dupuis C, Bardou N, Rodriguez J-B, Haïdar R, Pardo F, Pelouard J-L (2014) Optical index measurement of InAs/GaSb type-II superlattice for mid-infrared photodetection at cryogenic temperatures. Appl Phys Lett 105:141103

    Article  Google Scholar 

  23. Ali D, Richardson CJK (2014) Strain-balanced Si/SiGe type-II superlattices for near-infrared photodetection. Appl Phys Lett 105(3):031116

    Article  Google Scholar 

  24. Haugan HJ, Brown GJ, Olson BV, Kadlec EA, Kim JK, Shaner EA (2015) Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices. Appl Phys Lett 107(13):131102

    Article  Google Scholar 

  25. Imanishi Y, Hattori S, Kakuta A, Numata S (1993) Direct observation of an organic superlattice structure. Phys Rev Lett 71(13):2098

    Article  CAS  Google Scholar 

  26. So FF, Forrest SR (1991) Evidence for exciton confinement in crystalline organic multiple quantum wells. Phys Rev Lett 66(20):2649

    Article  CAS  Google Scholar 

  27. Gordan OD, Hermann S, Friedrich M, Zahn DRT (2005) Optical properties of 3,4,9,10-perylenetertracarboxylic dianhydride/copper phthalocyanine superlattices. J Appl Phys 97:063518

    Article  Google Scholar 

  28. Park TJ, Lee YK, Kwon SK, Kwon JH, Jang J (2006) Resonant tunneling diode made of organic semiconductor superlattice. Appl Phys Lett 89:151114

    Article  Google Scholar 

  29. Yanase T, Nagahama T, Shimada T (2013) Fabrication and characterization of photo-responsive organic p-type/n-type/piezoelectric tricolor superlattices. Appl Phys Lett 103(13):133305

    Article  Google Scholar 

  30. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302

    Article  CAS  Google Scholar 

  31. Hoppe H, Sariciftici NS (2004) Organic solar cells: an overview. J Mater Res 19:7–15

    Article  Google Scholar 

  32. Yang F, Shtein M, Forrest SR (2005) Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat Mater 4:37–41

    Article  Google Scholar 

  33. Peumans P, Bulović V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76(19):2650–2652

    Article  CAS  Google Scholar 

  34. Hong ZR, Huang ZH, Zeng XT (2006) Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions. Chem Phys Lett 425(1–3):62–65

    Article  CAS  Google Scholar 

  35. Li Y, Lv W, Luo X, Sun L, Zhao F, Zhang J, Zhong J, Huang F, Peng Y (2015) Enhanced performance of PbPc photosensitive organic field effect transistors by inserting different-thickness pentacene inducing layers. Org Electron 26:186–190

    Article  CAS  Google Scholar 

  36. Li Y, Zhang J, Lv W, Luo X, Sun L, Zhong J, Zhao F, Huang F, Peng Y (2015) Substrate temperature dependent performance of near infrared photoresponsive organic field effect transistors based on lead phthalocyanine. Synth Met 205:190–194

    Article  CAS  Google Scholar 

  37. Döring S, Otto T, Cehovski M, Charfi O, Caspary R, Kowalsky W, Rabe T (2016) Highly sensitive wide range organic photodiode based on zinc phthalocyanine:C60. Phys Status Solidi A 213(9):2387–2391

    Article  Google Scholar 

  38. Lee J, Jadhav P, Baldo MA (2009) High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl Phys Lett 95:033301

    Article  Google Scholar 

  39. Baeg K-J, Binda M, Natali D, Caironi M, Noh Y-Y (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25:4267–4295

    Article  CAS  Google Scholar 

  40. Gong X, Tong M, Xia Y, Cai W, Moon JS, Cao Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948):1665–1667

    Article  CAS  Google Scholar 

  41. Li Z, Gao F, Greenham NC, Mcneill CR (2011) Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv Funct Mater 21:1419–1431

    Article  CAS  Google Scholar 

  42. Mihailetchi VD, Wildeman J, Blom PW (2005) Space-charge limited photocurrent. Phys Rev Lett 94:126602–126800

    Article  CAS  Google Scholar 

  43. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett 86:123509

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant No. 2016YFF0203605, and the Natural Science Foundation of Zhejiang Province, Grant No. LY18F050009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingquan Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Xu, Z., Zheng, T. et al. Realizing high-responsive superlattice organic photodiodes by C60 and zinc phthalocyanine. J Mater Sci 54, 3187–3195 (2019). https://doi.org/10.1007/s10853-018-3052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3052-3

Keywords

Navigation