Skip to main content
Log in

Mechanical properties and deformation behaviors of surface-modified silicon: a molecular dynamics study

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties and deformation behaviors of monocrystalline silicon coated by an amorphous SiO2 film with different thicknesses are explored by nanoindentation process with molecular dynamics (MD) simulation. The results indicate that the calculated indentation modulus increases with the growing indentation depth for monocrystalline silicon with and without amorphous SiO2 film, while the modulus decreases with increasing film thickness at the same indentation depth. The derived hardness during indentation process, which is more sensitive to amorphous SiO2 film thickness, is complex due to the plastic deformation of SiO2 film, illustrating a deformation-induced softening behavior. The plastic deformation of amorphous SiO2 film exhibits four periods during whole indentation process, namely densification, densification–rupture transition, rupture during loading and elastic recovery during unloading, which are reasonably verified by CN number of silicon atoms and Si–O bond number within SiO2 film as a function of indentation depth. It is concluded that the SiO2 film acts as a medium to dissipate the energy and to transmit the stress from indenter to underlying silicon substrate. The MD results show that the differences of phase distribution between silicon with and without SiO2 film at the same penetration depth are driven by the stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang X, Kim SH, Chen C, Chen L, He H, Qian L (2015) Humidity dependence of tribochemical wear of monocrystalline silicon. ACS Appl Mater Interfaces 7:14785–14792

    Article  CAS  Google Scholar 

  2. Lee Y, Seo Y-J, Jeong H (2012) Evaluation of oxide-chemical mechanical polishing characteristics using ceria-mixed abrasive slurry. Electron Mater Lett 8:523–528

    Article  CAS  Google Scholar 

  3. Chagarov E, Adams JB (2003) Molecular dynamics simulations of mechanical deformation of amorphous silicon dioxide during chemical–mechanical polishing. J Appl Phys 94:3853–3861

    Article  CAS  Google Scholar 

  4. Qin K, Moudgil B, Park CW (2004) A chemical mechanical polishing model incorporating both the chemical and mechanical effects. Thin Solid Films 446:277–286

    Article  CAS  Google Scholar 

  5. Chen Y, Li Z, Qin J, Chen A (2016) Monodispersed mesoporous silica (mSiO(2)) spheres as abrasives for improved chemical mechanical planarization performance. J Mater Sci 51:5811–5822. https://doi.org/10.1007/s10853-016-9882-y

    Article  CAS  Google Scholar 

  6. Xu J, Luo JB, Wang LL, Lu XC (2007) The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing. Tribol Int 40:285–289

    Article  CAS  Google Scholar 

  7. Estragnat E, Tang G, Liang H, Jahanmir S, Pei P, Martin JM (2004) Experimental investigation on mechanisms of silicon chemical mechanical polishing. J Electron Mater 33:334–339

    Article  CAS  Google Scholar 

  8. Pietsch GJ, Chabal YJ, Higashi GS (1995) The atomic-scale removal mechanism during chemomechanical polishing of Si(100) and Si(111). Surf Sci 331:395–401

    Article  Google Scholar 

  9. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  CAS  Google Scholar 

  10. Cai X, Bangert H (1995) Hardness measurements of thin films-determining the critical ratio of depth to thickness using FEM. Thin Solid Films 264:59–71

    Article  CAS  Google Scholar 

  11. Tabor D (1951) The hardness of metals. Meas Tech 5:281

    Google Scholar 

  12. Ma ZS, Zhou YC, Long SG, Lu C (2012) On the intrinsic hardness of a metallic film/substrate system: indentation size and substrate effects. Int J Plast 34:1–11

    Article  Google Scholar 

  13. Asif SAS, Wahl KJ, Colton RJ (2000) The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces. J Mater Res 15:546–553

    Article  CAS  Google Scholar 

  14. Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, Wang YC, Lee JW, Liu FX, Liaw PK, Chen YC, Lee CM, Li CL, Rullyani C (2012) Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520:5097–5122

    Article  CAS  Google Scholar 

  15. Luo JF, Dornfeld DA (2001) Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans Semicond Manuf 14:112–133

    Article  Google Scholar 

  16. Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110:21497–21508

    Article  CAS  Google Scholar 

  17. Jin W, Kalia RK, Vashishta P, Rino JP (1993) Structural transformation, intermediate-range order, and dynamical behavior of SiO2 glass at high-pressures. Phys Rev Lett 71:3146–3149

    Article  CAS  Google Scholar 

  18. Ryuo E, Wakabayashi D, Koura A, Shimojo F (2017) Ab initio simulation of permanent densification in silica glass. Phys Rev B 96:054206

    Article  Google Scholar 

  19. Wang J, Rajendran AM, Dongare AM (2015) Atomic scale modeling of shock response of fused silica and α-quartz. J Mater Sci 50:8128–8141. https://doi.org/10.1007/s10853-015-9386-1

    Article  CAS  Google Scholar 

  20. Wu M, Liang YF, Jiang JZ, Tse JS (2012) Structure and properties of dense silica glass. Sci Rep 2:398

    Article  Google Scholar 

  21. Chowdhury SC, Haque BZ, Gillespie JW (2016) Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J Mater Sci 51:10139–10159. https://doi.org/10.1007/s10853-016-0242-8

    Article  CAS  Google Scholar 

  22. Chen RL, Wu YH, Lei H, Jiang RR, Liang M (2014) Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: molecular dynamics simulation. Appl Surf Sci 305:609–616

    Article  CAS  Google Scholar 

  23. van Duin ACT, Strachan A, Stewman S, Zhang QS, Xu X, Goddard WA (2003) ReaxFF(SiO) reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  24. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  25. Tersoff J (1989) Modeling solid-state chemistry—interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  CAS  Google Scholar 

  26. Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39:334–339

    Article  CAS  Google Scholar 

  27. Zhao S, Xue J (2015) Modification of graphene supported on SiO2 substrate with swift heavy ions from atomistic simulation point. Carbon 93:169–179

    Article  CAS  Google Scholar 

  28. Shi J, Chen J, Wei X, Fang L, Sun K, Sun J, Han J (2017) Influence of normal load on the three-body abrasion behaviour of monocrystalline silicon with ellipsoidal particle. RSC Adv 7:30929–30940

    Article  CAS  Google Scholar 

  29. Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478

    Article  CAS  Google Scholar 

  30. Xu KW, Hou GL, Hendrix BC, He JW, Sun Y, Zheng S, Bloyce A, Bell T (1998) Prediction of nanoindentation hardness profile from a load-displacement curve. J Mater Res 13:3519–3526

    Article  CAS  Google Scholar 

  31. Schiffmann KI (2011) Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models. Phil Mag 91:1163–1178

    Article  CAS  Google Scholar 

  32. Huang H, Zhao HW, Shi CL, Zhang L, Wan SG, Geng CY (2013) Randomness and statistical laws of indentation-induced pop-out in single crystal silicon. Materials 6:1496–1505

    Article  Google Scholar 

  33. Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38

    Article  CAS  Google Scholar 

  34. Chen R, Luo J, Guo D, Lu X (2008) Extrusion formation mechanism on silicon surface under the silica cluster impact studied by molecular dynamics simulation. J Appl Phys 104:104907

    Article  Google Scholar 

  35. Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng, A 253:151–159

    Article  Google Scholar 

  36. Komanduri R, Chandrasekaran N, Raff LM (2000) MD simulation of indentation and scratching of single crystal aluminum. Wear 240:113–143

    Article  CAS  Google Scholar 

  37. Mulliah D, Kenny SD, McGee E, Smith R, Richter A, Wolf B (2006) Atomistic modelling of ploughing friction in silver, iron and silicon. Nanotechnology 17:1807–1818

    Article  CAS  Google Scholar 

  38. Fang T-H, Chang W-J, Weng C-I (2006) Nanoindentation and nanomachining characteristics of gold and platinum thin films. Mater Sci Eng, A 430:332–340

    Article  Google Scholar 

  39. Rimsza JM, Yeon J, van Duin ACT, Du J (2016) Water interactions with nanoporous silica: comparison of ReaxFF and ab initio based molecular dynamics simulations. J Phys Chem C 120:24803–24816

    Article  CAS  Google Scholar 

  40. Shi J, Chen J, Fang L, Sun K, Sun J, Han J (2018) Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process. Appl Surf Sci 435:983–992

    Article  CAS  Google Scholar 

  41. Sun J, Fang L, Han J, Han Y, Chen H, Sun K (2013) Abrasive wear of nanoscale single crystal silicon. Wear 307:119–126

    Article  CAS  Google Scholar 

  42. Sun JP, Li C, Jing H, Ma AB, Fang L (2017) Nanoindentation induced deformation and pop-in events in a silicon crystal: molecular dynamics simulation and experiment. Sci Rep 7:10282

    Article  Google Scholar 

  43. Liu Q, Wang L, Shen S (2015) Effect of surface roughness on elastic limit of silicon nanowires. Comput Mater Sci 101:267–274

    Article  CAS  Google Scholar 

  44. Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2002) Nanoindentation-induced deformation of Ge. Appl Phys Lett 80:2651–2653

    Article  CAS  Google Scholar 

  45. Chen J, Shi J, Wang Y, Sun J, Han J, Sun K, Fang L (2018) Nanoindentation and deformation behaviors of silicon covered with amorphous SiO2: a molecular dynamic study. RSC Adv 8:12597–12607

    Article  CAS  Google Scholar 

  46. Spaepen F (2006) Homogeneous flow of metallic glasses: a free volume perspective. Scripta Mater 54:363–367

    Article  CAS  Google Scholar 

  47. Spaepen F (1977) Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415

    Article  CAS  Google Scholar 

  48. Argon AS (1979) Plastic-deformation in metallic glasses. Acta Metall 27:47–58

    Article  CAS  Google Scholar 

  49. Yavari AR, Le Moulec A, Inoue A, Nishiyama N, Lupu N, Matsubara E, Botta WJ, Vaughan G, Di Michiel M, Kvick A (2005) Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater 53:1611–1619

    Article  CAS  Google Scholar 

  50. Wright WJ, Hufnagel TC, Nix WD (2003) Free volume coalescence and void formation in shear bands in metallic glass. J Appl Phys 93:1432–1437

    Article  CAS  Google Scholar 

  51. Chen J, Shi J, Zhang M, Peng W, Fang L, Sun K, Han J (2018) Effect of indentation speed on deformation behaviors of surface modified silicon: a molecular dynamics study. Comput Mater Sci 155:1–10

    Article  CAS  Google Scholar 

  52. Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U (2006) Plastic flow softening in a bulk metallic glass. Acta Mater 54:4221–4228

    Article  CAS  Google Scholar 

  53. Zarudi I, Zhang LC (1999) Structure changes in mono-crystalline silicon subjected to indentation—experimental findings. Tribol Int 32:701–712

    Article  CAS  Google Scholar 

  54. Goel S, Faisal NH, Luo X, Yan J, Agrawal A (2014) Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J Phys D-Appl Phys 47:275304

    Article  Google Scholar 

  55. Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J, Ser A 42:546–559

    Article  CAS  Google Scholar 

  56. Gerbig YB, Michaels CA, Forster AM, Hettenhouser JW, Byrd WE, Morris DJ, Cook RF (2012) Indentation device for in situ Raman spectroscopic and optical studies. Rev Sci Instrum 83:125106

    Article  CAS  Google Scholar 

  57. Gerbig YB, Michaels CA, Forster AM, Cook RF (2012) In situ observation of the indentation-induced phase transformation of silicon thin films. Phys Rev B 85:104102

    Article  Google Scholar 

  58. Sanz-Navarro CF, Kenny SD, Smith R (2004) Atomistic simulations of structural transformations of silicon surfaces under nanoindentation. Nanotechnology 15:692–697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51375364, 51475359, 51505479) and Natural Science Foundation of Jiangsu Province of China (BK20150184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Fang or Kun Sun.

Ethics declarations

Conflict of interest

There authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Shi, J., Chen, Z. et al. Mechanical properties and deformation behaviors of surface-modified silicon: a molecular dynamics study. J Mater Sci 54, 3096–3110 (2019). https://doi.org/10.1007/s10853-018-3046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3046-1

Keywords

Navigation