Skip to main content
Log in

Separation of perchlorates from aqueous solution using functionalized graphene oxide nanosheets: a computational study

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this research, separation of perchlorate ion from aqueous solutions is investigated using functionalized graphene oxide nanosheet (GONS) membrane. Due to the ultrathin thickness of GONS, it was expected to have good water permeability of this membrane. At the same time, for the water treatment, it is necessary for perchlorate ions to stay behind the membrane, and to achieve this, appropriate pores with the functionalized groups at their edge should be created on the surface of GONS, so that the water molecules pass through them and the considered ions do not pass. The investigated systems included three types of functionalized GONS immersed in an aqueous solution of sodium perchlorate. Three different functional groups (–F, –OH and –H) were used on the edge pore with various sizes, and an external pressure was applied to the systems for permeation of water molecules through pores. The results showed that the GONS with a suitable functionalized pore was impermeable to perchlorate ions with a high permeability for water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour Manage 21:775–788

    Article  Google Scholar 

  2. Vasudevan S, Oturan MA (2014) Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett 12:97–108

    Article  CAS  Google Scholar 

  3. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Article  Google Scholar 

  4. Motzer WE (2001) Perchlorate: problems, detection, and solutions. Environ Forensics 2:301–311

    Article  CAS  Google Scholar 

  5. Nzengung VA, Wang C (2012) Perchlorate-contaminated water. Perchlorate Environ 57:219–229

    Google Scholar 

  6. Kannan K, Praamsma ML, Oldi JF, Kunisue T, Sinha RK (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76:22–26

    Article  CAS  Google Scholar 

  7. Damtie MM, Kim B, Woo YC, Choi J-S (2018) Membrane distillation for industrial wastewater treatment: studying the effects of membrane parameters on the wetting performance. Chemosphere 206:793–801

    Article  CAS  Google Scholar 

  8. Curteanu S, Piuleac CG, Godini K, Azaryan G (2011) Modeling of electrolysis process in wastewater treatment using different types of neural networks. Chem Eng J 172:267–276

    Article  CAS  Google Scholar 

  9. Singh N, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  10. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454. https://doi.org/10.1016/j.memsci.2018.03.051

    Article  CAS  Google Scholar 

  11. Bunani S, Yörükoğlu E, Yüksel Ü, Kabay N, Yüksel M, Sert G (2015) Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination 364:68–74

    Article  CAS  Google Scholar 

  12. Henze M, Harremoes P, la Cour JJ, Arvin E (2001) Wastewater treatment: biological and chemical processes. Springer, Berlin

    Google Scholar 

  13. Sadik OA, Du N, Yazgan I, Okello V (2014) Nanotechnology applications for clean water, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  14. Kanchi S (2014) Nanotechnology for water treatment. J Environ Anal Chem 1:1–3

    Google Scholar 

  15. Song X, Guo H, Tao J, Zhao S, Han X, Liu H (2018) Design of tunable-size 2D nanopore membranes from self-assembled amphiphilic nanosheets using dissipative particle dynamics simulations. Chem Eng Sci. https://doi.org/10.1016/j.ces.2018.05.023

    Article  Google Scholar 

  16. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  17. Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993. https://doi.org/10.1021/nn1006495

    Article  CAS  Google Scholar 

  18. Azamat J, Khataee A, Joo SW (2014) Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: a molecular dynamics simulation study. J Mol Graph Model 53:112–117

    Article  CAS  Google Scholar 

  19. Jahanshahi D, Vahid B, Azamat J (2018) Computational study on the ability of functionalized graphene nanosheet for nitrate removal from water. Chem Phys 511:20–26. https://doi.org/10.1016/j.chemphys.2018.05.018

    Article  CAS  Google Scholar 

  20. Rikhtehgaran S, Lohrasebi A (2018) Multilayer nanoporous graphene as a water purification membrane. J Nanosci Nanotechnol 18:5799–5803

    Article  CAS  Google Scholar 

  21. Nair R, Wu H, Jayaram P, Grigorieva I, Geim A (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–444

    Article  CAS  Google Scholar 

  22. Yu T, Xu Z, Liu S, Liu H, Yang X (2018) Enhanced hydrophilicity and water-permeating of functionalized graphene-oxide nanopores: molecular dynamics simulations. J Membr Sci 550:510–517

    Article  CAS  Google Scholar 

  23. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  Google Scholar 

  24. Wang Y, Sinha S, Ahuja K et al (2018) Dynamics of a water nanodrop through a holey graphene matrix: role of surface functionalization, capillarity, and applied forcing. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b01749

    Article  Google Scholar 

  25. Liu Y, Liu H (2018) Time-dependent density functional theory for fluid diffusion in graphene oxide membranes/graphene membranes. Chem Eng Sci 188:150–157. https://doi.org/10.1016/j.ces.2018.05.010

    Article  CAS  Google Scholar 

  26. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  27. Li H, Song Z, Zhang X et al (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98

    Article  CAS  Google Scholar 

  28. Lin L-C, Grossman JC (2015) Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat Commun 6:8335. https://doi.org/10.1038/ncomms9335. http://www.nature.com/articles/ncomms9335#supplementary-information

  29. Wei N, Peng X, Xu Z (2014) Understanding water permeation in graphene oxide membranes. ACS Appl Mater Interfaces 6:5877–5883. https://doi.org/10.1021/am500777b

    Article  CAS  Google Scholar 

  30. Shi K, Lian C, Bai Z, Zhao S, Liu H (2015) Dissipative particle dynamics study of the water/benzene/caprolactam system in the absence or presence of non-ionic surfactants. Chem Eng Sci 122:185–196

    Article  CAS  Google Scholar 

  31. Song X, Zhao S, Fang S, Ma Y, Duan M (2016) Mesoscopic simulations of adsorption and association of PEO-PPO-PEO triblock copolymers on a hydrophobic surface: from mushroom hemisphere to rectangle brush. Langmuir 32:11375–11385

    Article  CAS  Google Scholar 

  32. Ebro H, Kim YM, Kim JH (2013) Molecular dynamics simulations in membrane-based water treatment processes: a systematic overview. J Membr Sci 438:112–125. https://doi.org/10.1016/j.memsci.2013.03.027

    Article  CAS  Google Scholar 

  33. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  34. Nath SK (2003) Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes. J Phys Chem B 107:9498–9504. https://doi.org/10.1021/jp034140h

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  37. MacKerell A, Bashford D, Bellott M, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiór-kiewicz-Kuczera J, Yin D, Karplus M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  38. Song X, Guo H, Tao J, Zhao S, Han X, Liu H (2018) Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants. Chem Eng Sci 187:406–414

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  40. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  Google Scholar 

  41. Zhu F, Tajkhorshid E, Schulten K (2002) Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys J 83:154–160. https://doi.org/10.1016/S0006-3495(02)75157-6

    Article  CAS  Google Scholar 

  42. Zhu F, Tajkhorshid E, Schulten K (2004) Theory and simulation of water permeation in aquaporin-1. Biophys J 86:50–57. https://doi.org/10.1016/S0006-3495(04)74082-5

    Article  CAS  Google Scholar 

  43. Azamat J, Khataee A, Joo SW (2015) Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem Eng Sci 127:285–292. https://doi.org/10.1016/j.ces.2015.01.048

    Article  CAS  Google Scholar 

  44. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434. https://doi.org/10.1021/jp709845u

    Article  CAS  Google Scholar 

  45. Azamat J, Sardroodi JJ, Mansouri K, Poursoltani L (2016) Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube. Fluid Phase Equilib 425:230–236

    Article  CAS  Google Scholar 

  46. Wang Y, He Z, Gupta KM, Shi Q, Lu R (2017) Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon 116:120–127. https://doi.org/10.1016/j.carbon.2017.01.099

    Article  CAS  Google Scholar 

  47. Trung KH, Bo L, Kun Z, Wing-Keung LA (2017) Pressure-driven water permeation through multilayer graphene nanosheets. Physica Status Solidi (b) 254:1700074. https://doi.org/10.1002/pssb.201700074

    Article  CAS  Google Scholar 

  48. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  49. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282. https://doi.org/10.1016/0010-4655(95)00053-I

    Article  CAS  Google Scholar 

  50. Heiranian M, Farimani AB, Aluru NR (2015) Water desalination with a single-layer MoS2 nanopore. Nat Commun 6:8616. https://doi.org/10.1038/ncomms9616

    Article  CAS  Google Scholar 

  51. Baker RW (2012) Membrane technology and applications. Wiley, Chichester

    Book  Google Scholar 

  52. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018. https://doi.org/10.1038/natrevmats.2016.18

    Article  CAS  Google Scholar 

  53. Boukhvalov DW, Katsnelson MI, Son Y-W (2013) Origin of anomalous water permeation through graphene oxide membrane. Nano Lett 13:3930–3935. https://doi.org/10.1021/nl4020292

    Article  CAS  Google Scholar 

  54. Liang H, Yingru L, Qinqin Z, Wenjing Y, Gaoquan S (2015) Graphene oxide membranes with tunable semipermeability in organic solvents. Adv Mater 27:3797–3802. https://doi.org/10.1002/adma.201500975

    Article  CAS  Google Scholar 

  55. Zhang Y, Chung T-S (2017) Graphene oxide membranes for nanofiltration. Curr Opin Chem Eng 16:9–15. https://doi.org/10.1016/j.coche.2017.03.002

    Article  Google Scholar 

  56. Duan M, Song X, Zhao S et al (2017) Layer-by-layer assembled film of asphaltenes/polyacrylamide and its stability of water-in-oil emulsions: a combined experimental and simulation study. J Phys Chem C 121:4332–4342

    Article  CAS  Google Scholar 

  57. Beu TA (2010) Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions. J Chem Phys 132:164513. https://doi.org/10.1063/1.3387972

    Article  CAS  Google Scholar 

  58. Nieszporek K, Nieszporek J, Trojak M (2016) Calculations of shear viscosity, electric conductivity and diffusion coefficients of aqueous sodium perchlorate solutions from molecular dynamics simulations. Comput Theor Chem 1090:52–57. https://doi.org/10.1016/j.comptc.2016.06.002

    Article  CAS  Google Scholar 

  59. Price DJ, Brooks CL (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096. https://doi.org/10.1063/1.1808117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Tabriz for the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khataee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, P., Azamat, J. & Khataee, A. Separation of perchlorates from aqueous solution using functionalized graphene oxide nanosheets: a computational study. J Mater Sci 54, 2289–2299 (2019). https://doi.org/10.1007/s10853-018-3045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3045-2

Keywords

Navigation