Skip to main content

Advertisement

Log in

Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a novel approach to the fabrication of polypyrrole/reduced graphene oxide/carbon nanotube (PPy/rGO/CNT) composites. Firstly, the growth of carbon nanotube (CNT) and the partial reduction of graphene oxide occurred simultaneously within 10 s under ambient conditions using a microwave-assisted approach. Polypyrrole (PPy) was then integrated with reduced graphene oxide/carbon nanotube (rGO/CNT) hybrid materials through in situ oxidative polymerization of pyrrole in the presence of dodecylbenzenesulfonic acid, which acts as a stabilizing and doping agent. The morphological, structural, electrical, and thermal properties of PPy/rGO/CNT composites are discussed in detail, and a possible formation mechanism is proposed. The results indicate that introducing rGO/CNT into the PPy polymer can improve both the thermal and electrical properties of the polymer. Enhanced conductivity of 1214.16 S/m was observed in the sample with 5 wt% rGO/CNT loading with a pressing pressure of 10 MPa compared to that in individual PPy and PPy/GO samples pressed at the same pressing pressure. This study provides a simple approach to the preparation of PPy/rGO/CNT composites with tunable electrical properties for a variety of potential electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hazarika A, Deka BK, Kim DY et al (2016) Microwave-induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxide-grafted woven Kevlar® fiber. Compos Sci Technol 129:137–145. https://doi.org/10.1016/j.compscitech.2016.04.022

    Article  CAS  Google Scholar 

  2. Liu Z, Zhang L, Poyraz S et al (2014) An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Advances 4:9308–9313. https://doi.org/10.1039/c3ra47086e

    Article  CAS  Google Scholar 

  3. Wang B, Qiu J, Feng H, Sakai E (2015) Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors. Electrochim Acta 151:230–239. https://doi.org/10.1016/j.electacta.2014.10.153

    Article  CAS  Google Scholar 

  4. Zhang LM, Sui XL, Zhao L et al (2017) Three-dimensional hybrid aerogels built from graphene and polypyrrole-derived nitrogen-doped carbon nanotubes as a high-efficiency Pt-based catalyst support. Carbon 121:518–526. https://doi.org/10.1016/j.carbon.2017.06.023

    Article  CAS  Google Scholar 

  5. Zhang Ren, Wang Liu (2010) Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Phys Chem C 35:11435–11440. https://doi.org/10.1021/jp103745g

    Article  CAS  Google Scholar 

  6. Jyothirmayee Aravind SS, Eswaraiah V, Ramaprabhu S (2011) Facile synthesis of one-dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition. J Mater Chem 21:15179–15182. https://doi.org/10.1039/c1jm12731d

    Article  CAS  Google Scholar 

  7. Dong X, Li B, Wei A et al (2011) One-step growth of graphene-carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49:2944–2949. https://doi.org/10.1016/j.carbon.2011.03.009

    Article  CAS  Google Scholar 

  8. Bajpai R, Wagner HD (2015) Fast growth of carbon nanotubes using a microwave oven. Carbon 82:327–336. https://doi.org/10.1016/j.carbon.2014.10.077

    Article  CAS  Google Scholar 

  9. Liu Z, Wang J, Kushvaha V et al (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47:9912–9914. https://doi.org/10.1039/c1cc13359d

    Article  CAS  Google Scholar 

  10. Worsley MA, Pauzauskie PJ, Olson TY et al (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069. https://doi.org/10.1021/ja1072299

    Article  CAS  Google Scholar 

  11. Nardecchia S, Carriazo D, Ferrer ML et al (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42:794–830. https://doi.org/10.1039/c2cs35353a

    Article  CAS  Google Scholar 

  12. Bi H, Yin K, Xie X et al (2012) Low temperature casting of graphene with high compressive strength. Adv Mater 24:5124–5129. https://doi.org/10.1002/adma.201201519

    Article  CAS  Google Scholar 

  13. Park H, Kim JW, Hong SY et al (2018) Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv Func Mater 18:1707017-1–1707017-11. https://doi.org/10.1002/adfm.201707013

    Article  CAS  Google Scholar 

  14. Idowu A, Boesl B, Agarwal A (2018) 3D graphene foam-reinforced polymer composites—A review. Carbon 135:52–71. https://doi.org/10.1016/j.carbon.2018.04.024

    Article  CAS  Google Scholar 

  15. Chen G, Liu Y, Liu F, Zhang X (2014) Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability. Appl Surf Sci 311:808–815. https://doi.org/10.1016/j.apsusc.2014.05.171

    Article  CAS  Google Scholar 

  16. Woodward RT, Fam DWH, Anthony DB et al (2016) Hierarchically porous carbon foams from pickering high internal phase emulsions. Carbon 101:253–260. https://doi.org/10.1016/j.carbon.2016.02.002

    Article  CAS  Google Scholar 

  17. Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39:199–234. https://doi.org/10.1016/j.progpolymsci.2013.07.003

    Article  CAS  Google Scholar 

  18. Sun T, Zhang Z, Xiao J et al (2013) Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci Rep 3:1–6. https://doi.org/10.1038/srep02527

    Article  Google Scholar 

  19. Bai Y, Du M, Chang J et al (2014) Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J Mater Chem A 2:3834–3840. https://doi.org/10.1039/C3TA15004F

    Article  CAS  Google Scholar 

  20. Zhang Y, Wang Z, Ji Y et al (2015) Synthesis of Ag nanoparticle–carbon nanotube–reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection. RSC Advances 5:39037–39041. https://doi.org/10.1039/C5RA04246A

    Article  CAS  Google Scholar 

  21. Choi CH, Chung MW, Kwon HC et al (2014) Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media. Appl Catal B 144:760–766. https://doi.org/10.1016/j.apcatb.2013.08.021

    Article  CAS  Google Scholar 

  22. Sridhar V, Lee I, Chun HH, Park H (2015) Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon 87:186–192. https://doi.org/10.1016/j.carbon.2015.01.063

    Article  CAS  Google Scholar 

  23. Li Z, Yang B, Su Y et al (2016) Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage. Nanotechnology 27:1707017-1–1707017-10. https://doi.org/10.1088/0957-4484/27/2/025401

    Article  CAS  Google Scholar 

  24. Algadri NA, Hassan Z, Ibrahim K, Bououdina M (2017) Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven. J Mater Sci 52:12772–12782. https://doi.org/10.1007/s10853-017-1381-2

    Article  CAS  Google Scholar 

  25. Yoon B-J, Hong EH, Jee SE et al (2005) Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J Am Chem Soc 127:8234–8235. https://doi.org/10.1021/ja043823n

    Article  CAS  Google Scholar 

  26. Hong EH, Lee K-H, Oh SH, Park C-G (2003) Synthesis of carbon nanotubes using microwave radiation. Adv Func Mater 13:961–966. https://doi.org/10.1002/adfm.200304396

    Article  CAS  Google Scholar 

  27. Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4:707–714. https://doi.org/10.1039/C2NR11603K

    Article  CAS  Google Scholar 

  28. Nie H, Cui M, Russell TP (2013) A route to rapid carbon nanotube growth. Chem Commun 49:5159. https://doi.org/10.1039/c3cc41746h

    Article  CAS  Google Scholar 

  29. Bibi S, Ullah H, Ahmad SM et al (2015) Molecular and electronic structure elucidation of polypyrrole gas sensors. J Phys Chem C 119:15994–16003. https://doi.org/10.1021/acs.jpcc.5b03242

    Article  CAS  Google Scholar 

  30. Li Y, Ye D, Liu W et al (2017) A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO2/reduced graphene oxide/carbon nanotube for high performance lithium ion batteries. J Colloid Interface Sci 493:241–248. https://doi.org/10.1016/j.jcis.2017.01.008

    Article  CAS  Google Scholar 

  31. Peng YJ, Wu TH, Hsu CT et al (2014) Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors. J Power Sources 272:970–978. https://doi.org/10.1016/j.jpowsour.2014.09.022

    Article  CAS  Google Scholar 

  32. Ding B, Lu X, Yuan C et al (2012) One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors. Electrochim Acta 62:132–139. https://doi.org/10.1016/j.electacta.2011.12.011

    Article  CAS  Google Scholar 

  33. Zhou H, Zhai HJ (2016) A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics: physics, materials, applications 37:197–207. https://doi.org/10.1016/j.orgel.2016.06.036

    Article  CAS  Google Scholar 

  34. Yan M, Vetter CA, Gelling VJ (2013) Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys. Corros Sci 70:37–45. https://doi.org/10.1016/j.corsci.2012.12.019

    Article  CAS  Google Scholar 

  35. Hojjat Ansari M, Basiri Parsa J, Arjomandi J (2017) Application of conducting polyaniline, o-anisidine, o-phenetidine and o-chloroaniline in removal of nitrate from water via electrically switching ion exchange: modeling and optimization using a response surface methodology. Sep Purif Technol 179:104–117. https://doi.org/10.1016/j.seppur.2017.02.002

    Article  CAS  Google Scholar 

  36. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer (UK) 53:923–932. https://doi.org/10.1016/j.polymer.2011.12.054

    Article  CAS  Google Scholar 

  37. Khamlich S, Barzegar F, Nuru ZY et al (2014) Polypyrrole/graphene nanocomposite: high conductivity and low percolation threshold. Synth Met 198:101–106. https://doi.org/10.1016/j.synthmet.2014.10.004

    Article  CAS  Google Scholar 

  38. Manivel P, Kanagaraj S, Balamurugan A, et al (2014) Rheological behavior—Electrical and thermal properties of polypyrrole/graphene oxide nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.40642

    Article  Google Scholar 

  39. Omastová M, Trchova M, Kovarova J, Stejskal J (2003) Synthesis and structural study of polypyrrole prepared in the presence of surfactants. Synth Met 138:447–455. https://doi.org/10.1016/S0379-6779(02)00498-8

    Article  CAS  Google Scholar 

  40. Tabačiarová J, Mičušík M, Fedorko P, Omastová M (2015) Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab 120:392–401. https://doi.org/10.1016/j.polymdegradstab.2015.07.021

    Article  CAS  Google Scholar 

  41. Lu X, Zhang F, Dou H et al (2012) Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim Acta 69:160–166. https://doi.org/10.1016/j.electacta.2012.02.107

    Article  CAS  Google Scholar 

  42. Lu X, Dou H, Yuan C et al (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sour 197:319–324. https://doi.org/10.1016/j.jpowsour.2011.08.112

    Article  CAS  Google Scholar 

  43. Zhou H, Zhai H-J, Zhi X (2018) Enhanced electrochemical performances of polypyrrole/carboxyl graphene/carbon nanotubes ternary composite for supercapacitors. Electrochim Acta 290:1–11. https://doi.org/10.1016/j.electacta.2018.09.039

    Article  CAS  Google Scholar 

  44. Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639–644. https://doi.org/10.1016/j.compscitech.2008.12.010

    Article  CAS  Google Scholar 

  45. Bose S, Kuila T, Uddin ME et al (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928. https://doi.org/10.1016/j.polymer.2010.10.014

    Article  CAS  Google Scholar 

  46. Stejskal J, Omastová M, Fedorova S et al (2003) Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353–1358. https://doi.org/10.1016/S0032-3861(02)00906-0

    Article  CAS  Google Scholar 

  47. Rawal I, Kaur A (2014) Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles. J Appl Phys https://doi.org/10.1063/1.4863179

    Article  Google Scholar 

  48. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  49. Li Z, Yao Y, Lin Z et al (2010) Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem 20:4781. https://doi.org/10.1039/c0jm00168f

    Article  CAS  Google Scholar 

  50. Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp 2 carbon nanoforms. Carbon 50:741–747. https://doi.org/10.1016/j.carbon.2011.11.002

    Article  CAS  Google Scholar 

  51. Hsu FH, Wu TM (2012) In situ synthesis and characterization of conductive polypyrrole/graphene composites with improved solubility and conductivity. Synth Met 162:682–687. https://doi.org/10.1016/j.synthmet.2012.02.025

    Article  CAS  Google Scholar 

  52. Ivanova MV, Lamprecht C, Jimena Loureiro M et al (2012) Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. Int J Nanomed 7:403–415. https://doi.org/10.2147/IJN.S27442

    Article  CAS  Google Scholar 

  53. Sharma P, Bhalla V, Dravid V et al (2012) Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes. Scientific Reports 2:1–7. https://doi.org/10.1038/srep00877

    Article  CAS  Google Scholar 

  54. Wang X, Yang C, Li H, Liu P (2013) Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochim Acta 111:729–737. https://doi.org/10.1016/j.electacta.2013.08.145

    Article  CAS  Google Scholar 

  55. Naikoo RA, Tomar R (2018) Fabrication of a novel zeolite-X/reduced graphene oxide/polypyrrole nanocomposite and its role in sensitive detection of CO. Mater Chem Phys 211:225–233. https://doi.org/10.1016/j.matchemphys.2018.02.021

    Article  CAS  Google Scholar 

  56. Wang R, Wang Y, Xu C et al (2013) Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv 3:1194–1200. https://doi.org/10.1039/c2ra21825a

    Article  CAS  Google Scholar 

  57. Sanches EA, Alves SF, Soares JC, et al (2015) Nanostructured polypyrrole powder: a structural and morphological characterization. J Nanomater. https://doi.org/10.1155/2015/129678

    Article  Google Scholar 

  58. Asghari E, Ashassi-Sorkhabi H, Charmi GR et al (2016) A facile electrochemical strategy for synthesis of 3D nanodimensional polypyrrole structures using self-assembled layers of pyrrole monomers. Prog Org Coat 101:130–141. https://doi.org/10.1016/j.porgcoat.2016.07.015

    Article  CAS  Google Scholar 

  59. Machida S, Miyata S, Techagumpuch A (1989) Chemical synthesis of highly electrically conductive polypyrrole. Synth Met 31:311–318. https://doi.org/10.1016/0379-6779(89)90798-4

    Article  CAS  Google Scholar 

  60. Lu X, Dou H, Yang S et al (2011) Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim Acta 56:9224–9232. https://doi.org/10.1016/j.electacta.2011.07.142

    Article  CAS  Google Scholar 

  61. Zhang D, Zhang X, Chen Y et al (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996. https://doi.org/10.1016/j.jpowsour.2011.02.090

    Article  CAS  Google Scholar 

  62. Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of polypyrrole. J Chem Phys 92:3886–3891. https://doi.org/10.1063/1.457794

    Article  CAS  Google Scholar 

  63. Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J Chem Phys 92:3892–3898. https://doi.org/10.1063/1.457795

    Article  CAS  Google Scholar 

  64. Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for Polypyrrole nanocomposites. Macromolecules 48:1592–1597. https://doi.org/10.1021/ma502449k

    Article  CAS  Google Scholar 

  65. Lei J, Cai Z, Martin CR (1992) Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synthetic Metals 46:53–69. https://doi.org/10.1016/0379-6779(92)90318-D

    Article  CAS  Google Scholar 

  66. Gao YS, Xu JK, Lu LM et al (2014) Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62:261–267. https://doi.org/10.1016/j.bios.2014.06.044

    Article  CAS  Google Scholar 

  67. Muller D, Rambo CR, Porto LM et al (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohyd Polym 94:655–662. https://doi.org/10.1016/j.carbpol.2013.01.041

    Article  CAS  Google Scholar 

  68. Truong VT (1992) Thermal degradation of polypyrrole: effect of temperature and film thickness. Synth Met 52:33–44. https://doi.org/10.1016/0379-6779(92)90017-D

    Article  CAS  Google Scholar 

  69. Sahoo S, Karthikeyan G, Nayak GC, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713–1719. https://doi.org/10.1016/j.synthmet.2011.06.011

    Article  CAS  Google Scholar 

  70. Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6:20470. https://doi.org/10.1038/srep20470

    Article  CAS  Google Scholar 

  71. Joo J, Lee JK, Lee SY et al (2000) Physical characterization of electrochemically and chemically synthesized polypyrroles. Macromolecules 33:5131–5136. https://doi.org/10.1021/ma991418o

    Article  CAS  Google Scholar 

  72. Imran SM, Salman A, Shao GN et al (2016) Study of the electroconductive properties of conductive polymers-graphene/graphene oxide nanocomposites synthesized via in situ emulsion polymerization. Polym Polym Compos 16:101–113. https://doi.org/10.1002/pc.24179

    Article  CAS  Google Scholar 

  73. D. Fichou, G. Horowitz (2000) Molecular and polymer semiconductors, conductors, and superconductors: overview. Polymer. https://doi.org/10.1016/B0-08-043152-6/01000-7

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development program (No. 20154030200680) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry and Energy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manwar Hussain or Hee Taik Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, X.T., Park, S.S., Song, S. et al. Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization. J Mater Sci 54, 3156–3173 (2019). https://doi.org/10.1007/s10853-018-3043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3043-4

Keywords

Navigation