Skip to main content
Log in

LaF3: Pr3+ hollow hexagon nanostructures via green and eco-friendly synthesis and their photoluminescence properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LaF3 nanocrystals (NCs) are usually used as good host matrix for down-conversion phosphors owing to their impressive photophysical properties. In this study, Pr3+-activated LaF3 with hollow hexagon nanostructures (HHNs) is achieved by a green and eco-friendly hydrothermal method without any catalyst, template, or surfactant. The pore structure of the LaF3 HHNs is greatly affected by the content of Pr3+ ions and hydrothermal reaction time. The LaF3: Pr3+ NCs excited by 467 nm light show strong emission peaks locating in visible light region (centered at 612 and 635 nm) and the first biological window region (existed in 689 and 721 nm), respectively. The relative photoluminescence (PL) intensity of LaF3: Pr3+ NCs from 20 to 60 °C (biological temperature) decreases slightly and decreases only 20% at 120 °C. The PL emission intensity could reach the maximal value with doping ~ 1.5% Pr3+ ions. Based on the outstanding photophysical properties, LaF3: Pr3+ NCs will be used for both warm white light-emitting diodes and bio-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kang X, Yang Y, Wang L, Wei S, Pan D (2015) Warm white light emitting diodes with gelatin-coated AgInS2/ZnS core/shell quantum dots. ACS Appl Mater Interfaces 7(50):27713–27719

    Article  CAS  Google Scholar 

  2. Smet PF, Joos JJ (2017) White light-emitting diodes: stabilizing colour and intensity. Nat Mater 16(5):500–501

    Article  CAS  Google Scholar 

  3. Cho J, Park JH, Kim JK, Schubert EF (2017) White light-emitting diodes: history, progress, and future. Laser Photonics Rev 11(2):1600147

    Article  Google Scholar 

  4. Xue J, Gu Y, Shan Q, Zou Y, Song J, Xu L, Dong Y, Li J, Zeng H (2017) Constructing Mie-Scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport. Angew Chem Int Ed Eng 56(19):5232–5236

    Article  CAS  Google Scholar 

  5. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H (2016) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26(15):2435–2445

    Article  CAS  Google Scholar 

  6. Liang R, Yan D, Tian R, Yu X, Shi W, Li C, Wei M, Evans DG, Duan X (2014) Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes. Chem Mater 26(8):2595–2600

    Article  CAS  Google Scholar 

  7. Li X, Budai JD, Liu F, Howe JY, Zhang J, Wang X-J, Gu Z, Sun C, Meltzer RS, Pan Z (2013) New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light-Sci Appl 2(1):e50

    Article  Google Scholar 

  8. Li G, Tian Y, Zhao Y, Lin J (2015) Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem Soc Rev 44(23):8688–8713

    Article  CAS  Google Scholar 

  9. Denault KA, Brgoch J, Kloss SD, Gaultois MW, Siewenie J, Page K, Seshadri R (2015) Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts. ACS Appl Mater Interfaces 7(13):7264–7272

    Article  CAS  Google Scholar 

  10. Park WB, Singh SP, Yoon C, Sohn K-S (2012) Eu2+ luminescence from 5 different crystallographic sites in a novel red phosphor, Ca15Si20O10N30:eu2+. J Mater Chem 22(28):14068–14075

    Article  CAS  Google Scholar 

  11. Höppe HA, Lutz H, Morys P, Schnick W, Seilmeier A (2000) Luminescence in Eu2 + -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion. J Phys Chem Solids 61(12):2001–2006

    Article  Google Scholar 

  12. Mueller-Mach R, Mueller G, Krames MR, Höppe HA, Stadler F, Schnick W, Juestel T, Schmidt P (2005) Highly efficient all-nitride phosphor-converted white light emitting diode. Phys Status Solidi (a) 202(9):1727–1732

    Article  CAS  Google Scholar 

  13. Zeuner M, Schmidt PJ, Schnick W (2009) One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+ (M = Sr, Ba). Chem Mater 21(12):2467–2473

    Article  CAS  Google Scholar 

  14. Wagatha P, Pust P, Weiler V, Wochnik AS, Schmidt PJ, Scheu C, Schnick W (2016) Ca18.75Li10.5[Al39N55]:Eu2+—Supertetrahedron phosphor for solid-state lighting. Chem Mater 28(4):1220–1226

    Article  CAS  Google Scholar 

  15. Huang L, Zhu Y, Zhang X, Zou R, Pan F, Wang J, Wu M (2016) HF-Free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes. Chem Mater 28(5):1495–1502

    Article  CAS  Google Scholar 

  16. Nie L, Shen Y, Zhang X, Wang X, Liu B, Wang Y, Pan Y, Xie X, Huang L, Huang W (2017) Selective synthesis of LaF3 and NaLaF4 nanocrystals via lanthanide ion doping. J Mater Chem 5(35):9188–9193

    Google Scholar 

  17. Velázquez JJ, Balda R, Fernández J, Gorni G, Pascual L, Chen G, Sundararajan M, Durán A, Pascual MJ (2018) Transparent oxyfluoride glass-ceramics with NaGdF4 nanocrystals doped with Pr3+ and Pr3+-Yb3+. J Lumin 193:61–69

    Article  Google Scholar 

  18. Keevend K, Stiefel M, Neuer AL, Matter MT, Neels A, Bertazzo S, Herrmann IK (2017) Tb3+-doped LaF3 nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focused ion beam-sectioned biological samples. Nanoscale 9(13):4383–4387

    Article  CAS  Google Scholar 

  19. Ha HM, Hoa TTQ, Vu LV, Long NN (2017) Radiative transition dynamics of holmium ions-doped LaF3 nanocrystals. J Mater Sci Mater El 29(2):1607–1613

    Article  Google Scholar 

  20. Gulina LB, Tolstoy VP, Kasatkin IA, Kolesnikov IE, Danilov DV (2017) Formation of oriented LaF3 and LaF3:Eu3+ nanocrystals at the gas − solution interface. J Fluorine Chem 200:18–23

    Article  CAS  Google Scholar 

  21. Yu D, Cao F, Gao Y, Xiong Y, Zeng H (2018) Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays. Adv Funct Mater 28(19):1800248

    Article  Google Scholar 

  22. Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H (2016) Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater 28(24):4861–4869

    Article  CAS  Google Scholar 

  23. Tan XL, Fang M, Tan LQ, Liu HN, Ye XS, Hayat T, Wang XK (2018) Core-shell hierarchical C@Na2Ti3O7 center dot 9H2O nanostructures for the efficient removal of radionuclides. Environ Sci Nano 5(5):1140–1149

    Article  CAS  Google Scholar 

  24. Kasturi S, Marikumar R, Vaidyanathan S (2018) Trivalent rare-earth activated hexagonal lanthanum fluoride (LaF3:RE3+, where RE = Tb, Sm, Dy and Tm) nanocrystals: Synthesis and optical properties. Lumin 33(5):897–906

    Article  CAS  Google Scholar 

  25. Kasturi S, Sivakumar V, Jeon DY (2016) Europium-activated rare earth fluoride (LnF3:Eu3+–Ln = La, Gd) nanocrystals prepared by using ionic liquid/NH4F as a fluorine source via hydrothermal synthesis. Luminecsene 31(5):1138–1145

    CAS  Google Scholar 

  26. Li S, Zhang X, Hou Z, Cheng Z, Ma P, Lin J (2012) Enhanced emission of ultra-small-sized LaF3:RE3+ (RE = Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization. Nanoscale 4(18):5619–5626

    Article  CAS  Google Scholar 

  27. Ha HM, Hoa TTQ, Vu LV, Long NN (2017) Optical properties and Judd-Ofelt analysis of Sm ions in lanthanum trifluoride nanocrystals. J Mater Sci Mate El 28(1):884–891

    Article  CAS  Google Scholar 

  28. Rajesh D, Dousti MR, Amjad RJ, de Camargo ASS (2016) Quantum cutting and up-conversion investigations in Pr3+/Yb3+ co-doped oxyfluoro-tellurite glasses. J Non-Cryst Solids 450:149–155

    Article  CAS  Google Scholar 

  29. Gao D, Tian D, Chong B, Zhang X, Gao W (2014) Rare-earth doped LaF3 hollow hexagonal nanoplates: hydrothermal synthesis and photoluminescence properties. CrystEngComm 16(30):7106–7114

    Article  CAS  Google Scholar 

  30. Tang Y, Hu J, Elmenoufy AH, Yang X (2015) Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3: Tb scintillating nanoparticles. ACS Appl Mater Interfaces 7(22):12261–12269

    Article  CAS  Google Scholar 

  31. Zeng HC (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Curr Nanosci 3(2):177–181

    Article  CAS  Google Scholar 

  32. Li J, Zeng HC (2007) Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J Am Chem Soc 129(51):15839–15847

    Article  CAS  Google Scholar 

  33. Zhang Y, Huang F, Liu L, Liu X, Zheng S, Chen D (2016) Pr3+/Ho3+ co-doped glass phosphors for application in warm white light-emitting diodes. Mater Lett 167:1–3

    Article  CAS  Google Scholar 

  34. Zou H, Yu Y, Li J, Cao Q, Wang X, Hou J (2015) Photoluminescence, enhanced ferroelectric, and dielectric properties of Pr3+-doped SrBi2Nb2O9 multifunctional ceramics. Mater Res Bull 69:112–115

    Article  CAS  Google Scholar 

  35. Zou Z, Cao C, Zhang T, Feng L, Zhang J, Ci Z, Zhang Z, Wang Y (2016) Structure, long persistent luminescent properties and mechanism of a novel efficient red emitting Ca2Ga2GeO7:Pr3+ phosphor. J Alloys Compd 680:397–405

    Article  CAS  Google Scholar 

  36. Chen J, Guo C, Yang Z, Li T, Zhao J, McKittrick J (2016) Li2SrSiO4:Ce3+, Pr3+ phosphor with blue, red, and near-infrared emissions used for plant growth LED. J Am Ceram Soc 99(1):218–225

    Article  CAS  Google Scholar 

  37. Noto LL, Shaat SKK, Poelman D, Dhlamini MS, Mothudi BM, Swart HC (2016) Structure, photoluminescence and thermoluminescence study of a composite ZnTa2O6/ZnGa2O4 compound doped with Pr3+. Opt Mater 55:68–72

    Article  CAS  Google Scholar 

  38. Wu X, Chung TH, Sun H, Kwok KW (2016) Tunable photoluminescence properties of Pr3+/Er3+ -doped 0.93Bi0.5Na0.5TiO3 –0.07BaTiO3 low-temperature sintered multifunctional ceramics. Ceram Int 42(8):9899–9905

    Article  CAS  Google Scholar 

  39. Wang W, Li Y, Kou H, Liu S, Liu W, Shi Y, Li J, Feng X, Pan Y, Guo J (2015) Fabrication of Gd2O2S:Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere. Int Appl Ceram Tec 12:E249–E255

    Article  CAS  Google Scholar 

  40. Zhou Y, Zhang DA, Zeng J, Gan N, Cuan J (2018) A luminescent lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range. Talanta 181:410–415

    Article  CAS  Google Scholar 

  41. Fan Q, Cui X, Xu Y, Guo H, Gao F, Peng B (2018) Effect of the thermal treatment on the luminescence properties and dispersibility of LaF3: Nd nanoparticles in solvents. Colloids Surf Physicochem Eng Aspects 538:423–428

    Article  CAS  Google Scholar 

  42. Singh NS, Ningthoujam RS, Luwang MN, Singh SD, Vatsa RK (2009) Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles: Concentration and annealing effects. Chem Phys Lett 480(4–6):237–242

    Article  CAS  Google Scholar 

  43. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065

    Article  CAS  Google Scholar 

  44. Hwang HY, Cheong SW, Radaelli PG, Marezio M, Batlogg B (1995) Lattice effects on the magnetoresistance in doped LaMnO3. Phys Rev Lett 75(5):914–917

    Article  CAS  Google Scholar 

  45. Parra MR, Haque FZ (2014) Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J Mater Res Technol 3(4):363–369

    Article  CAS  Google Scholar 

  46. Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43(9):3115–3121

    Article  CAS  Google Scholar 

  47. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168:458–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11204307, 51471162), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Foundation of Director of Institute of Solid State Physics, Chinese Academy of Sciences (Grant No. 2016DFY06), and Higher School Natural Science Research Project of Anhui Province (TSKJ2017B19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Fang or Guang Tao Fei.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Fang, M., Fei, G.T. et al. LaF3: Pr3+ hollow hexagon nanostructures via green and eco-friendly synthesis and their photoluminescence properties. J Mater Sci 54, 2897–2907 (2019). https://doi.org/10.1007/s10853-018-3042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3042-5

Keywords

Navigation