Skip to main content
Log in

A mechanically robust double-network hydrogel with high thermal responses via doping hydroxylated boron nitride nanosheets

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Double-network (DN) hydrogel which possesses many superior performances such as excellent toughness, viscoelasticity and self-healing ability has become promising biomaterials. However, lack of thermal conductivity and moderate adhesiveness has greatly limited their application as load-bearing cartilage substitutes. Boron nitride itself has good rigidity and thermal conductivity but poor water solubility. Hydroxylated boron nitride nanosheets (OH-BNNSs) which have been previously reported have good water solubility (~ 0.6 mg/mL) and to obtain a homogeneous and stable dispersion. In this work, we introduced OH-BNNS into DN hydrogel to obtain high thermal conductivity and toughness hydrogel. The DN hydrogel is a class of physically double-network hydrogel with hydrophobic association polyacrylamide (PAM) and partly crystalline polyvinyl alcohol (PVA). Impressively, the obtained PVA/PAM/BNNS composite hydrogel possesses super-flexibility, high toughness, good thermal conductivity, appropriate tissue adhesiveness and stimuli-free self-healing ability. Therefore, the composite hydrogel overcomes the poor mechanical strength and locally overheating issues as cartilage substitutes and may also become alternatives for antipyretic pastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  CAS  Google Scholar 

  2. Fisher SA, Tam RY, Shoichet MS (2014) Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Eng Part A 20(5–6):895–898

    Article  Google Scholar 

  3. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Article  Google Scholar 

  4. Ren KX, He CL, Xiao CS, Li G, Chen XS (2015) Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 51:238–249

    Article  CAS  Google Scholar 

  5. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102):551–554

    Article  CAS  Google Scholar 

  6. Velders AH, Dijksman JA, Saggiomo V (2017) Hydrogel actuators as responsive instruments for cheap open technology (HARICOT). Appl Mater Today 9:271–275

    Article  Google Scholar 

  7. Lim S, Nguyen MP, Choi Y, Kim J, Kim D (2017) Bioadhesive nanoaggregates based on polyaspartamide-g-C18/DOPA for wound healing. Biomacromol 18(8):2402–2409

    Article  CAS  Google Scholar 

  8. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Func Mater 24(25):3933–3943

    Article  CAS  Google Scholar 

  9. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    Article  CAS  Google Scholar 

  10. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27(23):3566–3571

    Article  CAS  Google Scholar 

  11. Zhu M, Liu Y, Sun B, Zhang W, Liu X, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27(13):1023–1028

    Article  CAS  Google Scholar 

  12. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120–1124

    Article  CAS  Google Scholar 

  13. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13(7):485–487

    Article  CAS  Google Scholar 

  14. Guo M, Jiang M, Pispas S, Yu W, Zhou C (2008) Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-cyclodextrin and their hybridization with SiO2 nanoparticles through host–guest interaction. Macromolecules 41(24):9744–9749

    Article  CAS  Google Scholar 

  15. Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12):1622–1626

    Article  CAS  Google Scholar 

  16. Zhao J, Jiao K, Yang J, He C, Wang H (2013) Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels. Polymer 54(6):1596–1602

    Article  CAS  Google Scholar 

  17. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nature communications 2:511–517

    Article  Google Scholar 

  18. Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42(17):7446–7467

    Article  CAS  Google Scholar 

  19. Zhang Y, Song M, Diao Y, Li B, Shi L, Ran R (2016) Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC Advances 6(113):112468–112476

    Article  CAS  Google Scholar 

  20. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44(12):4997–5005

    Article  CAS  Google Scholar 

  21. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2472–2479

    Article  CAS  Google Scholar 

  22. Li G, Zhang H, Fortin D, Xia H, Zhao Y (2015) Poly (vinyl alcohol)–poly (ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42):11709–11716

    Article  CAS  Google Scholar 

  23. Bali R, Sharma S (2011) A model for intra-articular heat exchange in a knee joint. Tribol Lett 41(2):379–386

    Article  Google Scholar 

  24. Abdel-Sayed P, Moghadam MN, Salomir R, Tchernin D, Pioletti DP (2014) Intrinsic viscoelasticity increases temperature in knee cartilage under physiological loading. J Mech Behav Biomed Mater 30:123–130

    Article  Google Scholar 

  25. Abdel-Sayed P, Darwiche SE, Kettenberger U, Pioletti DP (2014) The role of energy dissipation of polymeric scaffolds in the mechanobiological modulation of chondrogenic expression. Biomaterials 35(6):1890–1897

    Article  CAS  Google Scholar 

  26. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43(3):934–959

    Article  CAS  Google Scholar 

  27. Lu F, Wang F, Cao L, Kong CY, Huang X (2012) Hexagonal boron nitride nanomaterials: advances towards bioapplications. Nanoscience and Nanotechnology Letters 4(10):949–961

    Article  CAS  Google Scholar 

  28. Ikuno T, Sainsbury T, Okawa D, Fréchet J, Zettl A (2007) Amine-functionalized boron nitride nanotubes. Solid State Commun 142(11):643–646

    Article  CAS  Google Scholar 

  29. Hu X, Liu J, He Q, Meng Y, Cao L, Sun Y-P, Chen J, Lu F (2016) Aqueous compatible boron nitride nanosheets for high-performance hydrogels. Nanoscale 8(7):4260–4266

    Article  CAS  Google Scholar 

  30. Tong X, Du L, Xu Q (2018) Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly (N-isopropylacrylamide). Journal of Materials Chemistry A 6(7):3091–3099

    Article  CAS  Google Scholar 

  31. Xue S, Wu Y, Wang J, Guo M, Liu D, Lei W (2018) Boron nitride nanosheets/PNIPAM hydrogels with improved thermo-responsive performance. Materials (Basel, Switzerland) 11(7):1069–1078

    Article  Google Scholar 

  32. Lin Y, Williams TV, Connell JW (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1(1):277–283

    Article  Google Scholar 

  33. Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C (2017) Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces 9(11):10078–10084

    Article  CAS  Google Scholar 

  34. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko YK, Coleman J (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134(45):18758–18771

    Article  CAS  Google Scholar 

  35. Yu B, Xing W, Guo W, Qiu S, Wang X, Lo S, Hu Y (2016) Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process. J Mater Chem A 4(19):7330–7340

    Article  CAS  Google Scholar 

  36. Lee D, Lee B, Park KH, Ryu HJ, Jeon S, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett 15(2):1238–1244

    Article  CAS  Google Scholar 

  37. Xiao F, Naficy S, Casillas G, Khan MH, Katkus T, Jiang L, Liu H, Li H, Huang Z (2015) Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels. Adv Mater 27(44):7196–7203

    Article  CAS  Google Scholar 

  38. Jing L, Li H, Tay RY, Sun B, Tsang SH, Cometto O, Lin J, Teo EHT, Tok AIY (2017) Biocompatible hydroxylated boron nitride nanosheets/poly (vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano 11(4):3742–3751

    Article  CAS  Google Scholar 

  39. Han L, Lu X, Liu K, Wang K, Fang L, Weng L-T, Zhang H, Tang Y, Ren F, Zhao C (2017) Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3):2561–2574

    Article  CAS  Google Scholar 

  40. Han L, Yan L, Wang K, Fang L, Zhang H, Tang Y, Ding Y, Weng L-T, Xu J, Weng J (2017) Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials 9(4):e372–e384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants 51773124, 51403132), Sichuan Science and Technology Program China (Grants 2016GZ0300, 2018GZ0322), Innovation Team Program of Science and Technology Department of Sichuan Province (Grant 2014TD0002), Cooperation strategic projects of Luzhou governments and Sichuan University (Grant 2015CDLZ-G13) and the Fundamental Research Funds for the Central Universities (Grant 2012017yjsy184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Ran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Hu, C., Zhang, Y. et al. A mechanically robust double-network hydrogel with high thermal responses via doping hydroxylated boron nitride nanosheets. J Mater Sci 54, 3368–3382 (2019). https://doi.org/10.1007/s10853-018-3037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3037-2

Keywords

Navigation