Skip to main content
Log in

Sensitive and selective non-enzymatic glucose detection using electrospun porous CuO–CdO composite nanofibers

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous CuO–CdO nanofibers with mean diameter of 463 nm and high surface-to-volume ratio were prepared by impregnating electrospun carboxylic-functionalized poly(arylene ether ketone) (PCA-PAEK) nanofibrous webs with metal acetate solution and subsequent calcination. The special morphology was demonstrated to be decided by ion exchange reaction between metal ions and functional groups on polymer. TGA and EDX analysis confirmed that Cd2+ was more readily to react with PCA-PAEK than Cu2+, and the amount of Cu2+ can be decreased by overloading of Cd2+, leading to the degradation of sensing performance. FT-IR proved the existence of the ion exchange reaction and demonstrated the products were highly pure CuO–CdO compounds with EDX and XRD spectra. The products detailedly investigated for direct electrocatalytic oxidation of glucose evaluated cyclic voltammetry and chronoamperometry. CuO–CdO nanofibers modified electrodes exhibited superiorities of good anti-interference, low detection limit and fast response of glucose, attributing to the enhanced conductivity brought by CdO, good electrocatalytic activity brought by CuO and large surface area brought by porous structure. The simple strategy of electrospinning porous nanofibers using PCA-PAEK as templates and combined CuO and CdO with good electrooxidation glucose functions opens a new route to generate novel conductive metal oxide hybrid nanofibers applied for glucose enzymeless sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hwang B, Kim M, Cho SM, Becker S, Kim YH, Kim H (2017) Embedded silver-nanowire electrode in an acrylic polymer-silicate nanoparticle composite for highly robust flexible devices. J Appl Polym Sci 134:45203. https://doi.org/10.1002/app.45203

    Article  CAS  Google Scholar 

  2. Liu M, Cheng Z, Yan J, Qiang L, Ru X, Liu F, Ding D, Li J (2013) Preparation and characterization of TiO2 nanofibers via using polylactic acid as template. J Appl Polym Sci 128:1095–1100

    Article  CAS  Google Scholar 

  3. Liu Y, Zhang B, Luo L, Chen X, Wang Z, Wu E, Su DS, Huang W (2015) TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew Chem Int Edit 54:15260–15265

    Article  CAS  Google Scholar 

  4. Ding H, Ma Y (2015) Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small 11:1055–1071

    Article  CAS  Google Scholar 

  5. Zhang L, Wang X, Xu W, Zhang Y, Li Q, Bradford PD, Zhu Y (2015) Strong and conductive dry carbon nanotube films by microcombing. Small 11:3830–3836

    Article  CAS  Google Scholar 

  6. Wang W, Li Z, Zheng W, Dong B, Li S, Wang C (2010) A novel non-enzymatic glucose sensor based on nickel (II) oxide electrospun nanofibers. J Nanosci Nanotechno 10:7537–7540

    Article  CAS  Google Scholar 

  7. Islam AB, Islam SK, Rahman T (2010) A highly selective mediator less glucose detector employing vertically aligned carbon nanofiber (VACNF). In: Ieee sensors 2010 conference, pp 42–46

  8. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  9. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53:1309–1316

    Article  CAS  Google Scholar 

  10. Lee DY, Kafi AKF, Choi WS, Park SH, Kwon YS (2008) Glucose sensor based on glucose oxidase-lipid LB film immobilized in prussian blue layer. J Nanosci Nanotechnol 8:4543–4547

    Article  CAS  Google Scholar 

  11. Manesh KM, Kim JH, Santhosh P, Gopalan AY, Lee KP, Kang HD (2007) Fabrication of a gold nanoparticles decorated carbon nanotubes based novel modified electrode for the electrochemical detection of glucose. J Nanosci Nanotechnol 7:3365–3372

    Article  CAS  Google Scholar 

  12. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  13. Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306

    Article  CAS  Google Scholar 

  14. Li J, Hu H, Li H, Yao C (2017) Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J Mater Sci 52:10455–10469. https://doi.org/10.1007/s10853-017-1221-4

    Article  CAS  Google Scholar 

  15. Liu H, Su X, Tian X, Huang Z, Song W, Zhao J (2006) Preparation and electrocatalytic performance of functionalized copper-based nanoparticles supported on the gold surface. Electroanalysis 18:2055–2060

    Article  CAS  Google Scholar 

  16. Zhou L, Gan T, Zheng DY, Yan JJ, Hu CG, Hu SS (2012) High-density gold nanoparticles on multi-walled carbon nanotube films: a sensitive electrochemical nonenzymatic platform of glucose. J Exp Nanosci 7:263–273

    Article  CAS  Google Scholar 

  17. Sun YP, Buck H, Mallouk TE (2001) Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal Chem 73:1599–1604

    Article  CAS  Google Scholar 

  18. Liu YX, Ding Y, Zhang YC, Lei Y (2012) Pt-Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sens Actuators B 171:954–961

    Article  Google Scholar 

  19. Sahay R, Kumar PS, Aravindan V, Sundaramurthy J, Ling WC, Mhaisalkar SG, Ramakrishna S, Madhavi S (2012) High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J Phys Chem C 116:18087–18092

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu Y, Su L, Zhang Z, Huo D, Hou C, Lei Y (2014) CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens Actuators B 191:86–93

    Article  CAS  Google Scholar 

  21. Kanjwal MA, Barakat NAM, Sheikh FA, Kim HY (2010) Electronic characterization and photocatalytic properties of TiO2/CdO electrospun nanofibers. J Mater Sci 45:1272–1279. https://doi.org/10.1007/s10853-009-4078-3

    Article  CAS  Google Scholar 

  22. Wang SH, Yang SH (2001) Spectroscopic characterization of the copper sulphide core/shell nanowires. Mater Sci Eng C 16:37–40

    Article  Google Scholar 

  23. Ding Y, Wang Y, Zhang LC, Zhang H, Lei Y (2012) Preparation, characterization and application of novel conductive NiO–CdO nanofibers with dislocation feature. J Mater Chem 22:980–986

    Article  CAS  Google Scholar 

  24. Savva I, Kalogirou AS, Chatzinicolaou A, Papaphilippou P, Pantelidou A, Vasile E, Vasile E, Koutentis PA, Christoforou TK (2014) PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv 4:44911–44921

    Article  CAS  Google Scholar 

  25. Deshawar D, Chokshi P (2017) Stability analysis of an electrospinning jet of a polymeric fluid. Polymer 131:34–49

    Article  CAS  Google Scholar 

  26. Wittmer CR, Hebraud A, Nedjari S, Schlatter G (2014) Well-organized 3D nanofibrous composite constructs using cooperative effects between electrospinning and electrospraying. Polymer 55:5781–5787

    Article  CAS  Google Scholar 

  27. Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22:326–338

    Article  CAS  Google Scholar 

  28. Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH (2005) Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol 16:276–282

    Article  CAS  Google Scholar 

  29. Liu M, Wang Y, Cheng Z, Zhang M, Hu M, Li J (2015) Electrospun carboxylic-functionalized poly(arylene ether ketone) ultrafine fibers: optimization, characterization, and water absorption behavior. High Perform Polym 27:939–949

    Article  CAS  Google Scholar 

  30. Sarah LS, David WW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from cylindrotheca fusiformis. Chem Mater 18:3108–3113

    Article  Google Scholar 

  31. Nuansing WW, Ninmuang S, Jarernboon W, Maensiria S, Seraphin S (2006) Structural characterization and morphology of electrospun TiO2 nanofibers. Mater Sci Eng, B 131:147–155

    Article  CAS  Google Scholar 

  32. Ding B, Kim CK, Kim HY, Seo MK, Park SJ (2004) Titanium dioxide nanofibers prepared by using electrospinning method. Fiber Polym 5:105–109

    Article  CAS  Google Scholar 

  33. Zheng JY, Pang JB, Qiu KY, Wei Y (2001) Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template. J Mater Chem 11:3367–3372

    Article  CAS  Google Scholar 

  34. Zheng JY, Qiu KY, Feng QW, Xu JG, Wei Y (2000) Sol–Gel synthesis of mesoporous titania using nonsurfactant organic compounds as templates. Mol Cryst Liq Cryst 354:183–194

    Article  CAS  Google Scholar 

  35. Liu M, Wang Y, Cheng Z, Zhang M, Hu M, Li J (2014) Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: morphology and catalytic application. Appl Surf Sci 313:360–367

    Article  CAS  Google Scholar 

  36. Yang J, Zeng JH, Yu SH, Yang L, Zhou G, Qian Y (2000) Formation process of CdS nanorods via solvothermal route. Chem Mater 12:3259–3263

    Article  CAS  Google Scholar 

  37. Liu M, Song L, Wang Y, Cheng Z, Li J (2014) High-effective preparation of ultrafine poly-(L-lactide-co-ε-caprolactone-diOH) fibers containing silver nanoparticles. High Perform Polym 26:483–487

    Article  Google Scholar 

  38. Liu M, Wang Y, Cheng Z, Song L, Zhang M, Hu M, Li J (2014) Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates. Mater Sci Eng B 187:89–95

    Article  CAS  Google Scholar 

  39. Zhang Y (2016) Synthesis and photoluminescence study of zinc sulfide–poly(arylene ether ketone) nanocomposite materials. High Perform Polym 28:198–205

    Article  CAS  Google Scholar 

  40. Guan H, Shao C, Chen B, Gong J, Yang X (2003) A novel method for making CuO superfine fibres via an electrospinning technique. Inorg Chem Commun 6:1409–1411

    Article  CAS  Google Scholar 

  41. Bazargan AM, Fateminia SMA, Ganji ME, Bahrevar MA (2009) Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem Eng J 155:523–527

    Article  CAS  Google Scholar 

  42. Wang W, Zhang L, Tong S, Li X, Song W (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714

    Article  CAS  Google Scholar 

  43. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mat Sci Eng C 41:100–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongpeng Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, Y. & Lu, D. Sensitive and selective non-enzymatic glucose detection using electrospun porous CuO–CdO composite nanofibers. J Mater Sci 54, 3354–3367 (2019). https://doi.org/10.1007/s10853-018-3034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3034-5

Keywords

Navigation