Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP


This study investigates the influence of the initial state of the commercial AX41 magnesium alloy on the microstructure evolution and mechanical properties after equal-channel angular pressing. Two initial conditions, an as-cast one with a grain size of 200 μm and a random crystallographic texture, and an extruded one having a grain size of 10 μm and a strong fibre texture, are compared. ECAP processing was performed at the temperature of 220 °C up to 8 passes via route BC. A much smaller grain size was obtained in the ECAP-processed as-cast material compared to the extruded one. This difference was attributed to the different evolution of the dislocation density and its fractions in different slip systems. Consequently, different refinement mechanisms were dominant in the later stage of ECAP processing. It was shown that ECAP processing leads to the formation of similar crystallographic textures for both initial states, having dominant basal texture component. The mechanical properties investigation showed improvement in the microhardness, tensile strength and elongation in both ECAP-processed samples.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14


  1. 1

    Geranmayeh AR, Mahmudi R, Movahedi-Rad A, Malekoshoaraei MH (2012) High-temperature mechanical properties of AZ61 and AZ61-0.7Si magnesium alloys. Kovove Mater 50:393–397

    CAS  Google Scholar 

  2. 2

    Bohlen J, Letzig D, Kainer KU (2007) New perspectives for wrought magnesium alloys. Mater Sci Forum 546–549:1–10

    Article  Google Scholar 

  3. 3

    Huang X, Suzuki K, Chino Y, Mabuchi M (2015) Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J Alloys Compd 632:94–102

    CAS  Article  Google Scholar 

  4. 4

    Bakke P, Pettersen K, Westengen H (2003) Enhanced ductility and strength through re addition to magnesium die casting alloys. In: Kaplan HI (ed) Magnesium technology 2003, Proc. TMS 2003. Minerals, Metals and Materials Society. Warrendale, USA, pp. 171–176

    Google Scholar 

  5. 5

    Mordike BL, Ebert T (2001) Magnesium properties—applications—potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  6. 6

    Kang J, Sun X, Deng K, Xu F, Zhang X, Bai Y (2017) High strength Mg–9Al serial alloy processed by slow extrusion. Mater Sci Eng A 697:211–216

    CAS  Article  Google Scholar 

  7. 7

    Chen WZ, Zhang WC, Qiao YD, Miao Q, Wang ED (2016) Enhanced ductility in high-strength fine-grained magnesium and magnesium alloy sheets processed via multi-pass rolling with lowered temperature. J Alloys Compd 665:13–20

    CAS  Article  Google Scholar 

  8. 8

    Kamado S, Kojima Y (1998) Deformability and strengthening of superlight Mg–Li alloys. Metall Sci Technol 16:45–53

    CAS  Google Scholar 

  9. 9

    Asgari H, Odeshi AG, Szpunar JA, Zeng LJ, Olsson E, Li DY (2015) Effect of yttrium on the twinning and plastic deformation of AE magnesium alloy under ballistic impact. Mater Sci Eng A 623:10–21

    CAS  Article  Google Scholar 

  10. 10

    Nascimento L, Yi S, Bohlen J, Fuskova L, Letzig D, Kainer KU (2010) High cycle fatigue behaviour of magnesium alloys. Procedia Eng 2:743–750

    CAS  Article  Google Scholar 

  11. 11

    Minárik P, Král R, Čížek J, Chmelík F (2016) Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater 107:83–95

    Article  Google Scholar 

  12. 12

    Chino Y, Huang X, Suzuki K, Mabuch M (2010) Enhancement of stretch formability at room temperature by addition of Ca in Mg–Zn Alloy. Mater Trans 51:818–821

    CAS  Article  Google Scholar 

  13. 13

    Minárik P, Krajňák T, Srba O, Čížek J, Gubicza J, Dopita M, Kužel R, Janeček M (2017) Mechanical properties and microstructure development in ultrafine-grained materials processed by equal-channel angular pressing. In: Cabibbo M (ed) Severe plastic deformation techniques. InTechOpen, Rijeka, pp 39–72

    Google Scholar 

  14. 14

    Su Q, Xu J, Li Y, Yoon JI, Shan D, Guo B, Kim HS (2018) Microstructural evolution and mechanical properties in superlight Mg–Li alloy processed by high-pressure torsion. Materials 11:598–612

    Article  Google Scholar 

  15. 15

    Han T, Huang G, Deng Q, Wang G, Jiang B, Tang A, Zhu Y, Pan F (2018) Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding. J Alloys Compd 745:599–608

    CAS  Article  Google Scholar 

  16. 16

    Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164

    Article  Google Scholar 

  17. 17

    Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    CAS  Article  Google Scholar 

  18. 18

    Biswas S, Dhinwal SS, Suwas S (2010) Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater 58:3247–3261

    CAS  Article  Google Scholar 

  19. 19

    Lin HK, Huang JC, Langdon TG (2005) Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater Sci Eng A 402:250–257

    Article  Google Scholar 

  20. 20

    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater 51:3073–3084

    CAS  Article  Google Scholar 

  21. 21

    Minárik P, Král R, Janeček M (2013) Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl Surf Sci 281:44–48

    Article  Google Scholar 

  22. 22

    Ribárik G, Gubicza J, Ungár T (2004) Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction. Mater Sci Eng A 387–389:343–347

    Article  Google Scholar 

  23. 23

    Poggiali FSJ, Figueiredo RB, Aguilar MTP, Cetlin PR (2013) Effect of grain size on compression behavior of magnesium processed by equal channel angular pressing. J Mater Res Technol 2:30–35

    CAS  Article  Google Scholar 

  24. 24

    Krajňák T, Minárik P, Gubicza J, Máthis K, Kužel R, Janeček M (2017) Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Mater Charact 123:282–293

    Article  Google Scholar 

  25. 25

    Máthis K, Nyilas K, Axt A, Dragomír IC, Ungár T, Lukáč P (2004) The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater 52:2889–2894

    Article  Google Scholar 

  26. 26

    Ding SX, Chang CP, Kao PW (2009) Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metall Mater Trans 40A:415–425

    CAS  Article  Google Scholar 

  27. 27

    Figueiredo RB, Langdon TG (2009) Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing. J Mater Sci 44:4758–4762.

    CAS  Article  Google Scholar 

  28. 28

    Müller J, Janeček M, Yi S, Čížek J, Wagner L (2009) Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys. Int J Mater Res 100:838–842

    Article  Google Scholar 

  29. 29

    Janeček M, Čížek J, Gubicza J, Vrátná J (2012) Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. J Mater Sci 47:7860–7869.

    CAS  Article  Google Scholar 

  30. 30

    Britton TB, Birosca S, Preuss M, Wilkinson AJ (2010) Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti–6Al–4V alloy. Scr. Mater. 62:639–642

    CAS  Article  Google Scholar 

  31. 31

    Song B, Pan H, Chai L, Guo N, Zhao H, Xin R (2017) Evolution of gradient microstructure in an extruded AZ31 rod during torsion and annealing and its effects on mechanical properties. Mater Sci Eng A 689:78–88

    CAS  Article  Google Scholar 

  32. 32

    Dragomir IC, Ungár T (2002) Contrast factors of dislocations in the hexagonal crystal system. J Appl Crystallogr 35:556–564

    CAS  Article  Google Scholar 

  33. 33

    Gubicza J (2012) Defect structure in nanomaterials. Woodhead, Cambridge

    Book  Google Scholar 

  34. 34

    Imrana M, Bambacha M (2017) A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients. Procedia Eng 207:2107–2112

    Article  Google Scholar 

  35. 35

    Galiyev A, Kaibyshev R, Gottstein G (2001) Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater 49:1199–1207

    CAS  Article  Google Scholar 

  36. 36

    Xia X, Chen Q, Zhang K, Zhao Z, Ma M, Li X, Li Y (2013) Hot deformation behavior and processing map of coarse-grained Mg–Gd–Y–Nd–Zr alloy. Mater Sci Eng A 587:283–290

    CAS  Article  Google Scholar 

  37. 37

    Krajňák T, Minárik P, Stráská J, Gubicza J, Máthis K, Janeček M (2017) Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. J Alloys Compd 705:273–282

    Article  Google Scholar 

  38. 38

    Minárik P, Král R, Čížek J, Chmelík F (2016) Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater 107:83–95

    Article  Google Scholar 

  39. 39

    Chang Y, Kochmann DM, Denis M (2015) A variational constitutive model for slip-twinning interactions in hcp metals: application to single- and polycrystalline magnesium. Int J Plast 73:39–61

    CAS  Article  Google Scholar 

  40. 40

    Ostapovets A, Serra A (2017) Slip dislocation and twin nucleation mechanisms in hcp metals. J Mater Sci 52:533–540.

    CAS  Article  Google Scholar 

  41. 41

    Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y (2010) Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A 527:4250–4256

    Article  Google Scholar 

  42. 42

    Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tome CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90:2161–2190

    CAS  Article  Google Scholar 

  43. 43

    Čapek J, Máthis K, Clausen B, Marnett M (2017) Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater 130:319–328

    Article  Google Scholar 

  44. 44

    Wang X, Jiang L, Luo A, Song J, Liu Z, Yin F (2014) Deformation of twins in a magnesium alloy under tension at room temperature. J Alloys Compd 594:44–47

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Czech Science Foundation under the Project 14-36566G. Partial financial support by ERDF under the Project “Nanomaterials centre for advanced applications”, Project No. CZ.02.1.01/0.0/0.0/15_003/0000485, is also gratefully acknowledged. One of the authors J.G. acknowledges partial financial support by the Ministry of Human Capacities of Hungary within the ELTE University Excellence Program (1783-3/2018/FEKUTSRAT).

Author information



Corresponding author

Correspondence to Tomáš Krajňák.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krajňák, T., Minárik, P., Stráská, J. et al. Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. J Mater Sci 54, 3469–3484 (2019).

Download citation


  • Equal Channel Angular Pressing (ECAP)
  • ECAP Processing
  • Texture Components
  • Random Crystallographic Texture
  • Magnesium Alloys