Skip to main content
Log in

Synthesis of CeO2-modified activated carbon spheres by grafting and coordinating reactions for elemental mercury removal

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Series of resin-based activated carbon spheres with well-dispersed CeO2 particles inside and high surface area were successfully prepared by the grafting of MMA and coordinating reactions of cerium(III) nitrate salt and steam activation. N2 adsorption isotherms, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction-meter and X-ray photoelectron spectroscopy were applied to study the textural and surface characteristics of the obtained activated carbon spheres, and the Hg0 removal performances were evaluated in a fixed bed reactor. The experimental results indicated that pore structure, surface chemical properties and Hg0 removal ability of activated carbon spheres were observably improved after the modification of grafting and coordinating reactions. The optimal cerium(III) nitrate loading value, reaction temperature and O2 content were 7%, 150 °C and 5%, respectively. Moreover, SO2 showed an obvious inhibitory effect on the Hg0 removal efficiency in the absence of O2, while it facilitated the Hg0 removal in the presence of O2. Nitrogen monoxide promoted the Hg0 removal with or without O2, while water vapor inhibited the Hg0 removal over ACS-M-7%Ce. In addition, both of stable removal performance and excellent recycling ability were shown for ACS-M-7%Ce in ten cycles. The Hg0 removal mechanism analysis indicated that introduced CeO2 significantly promoted the Hg0 removal ability of ACS-M-7%Ce by generating the active species (such as C=O or C–O) and the lattice oxygen through the Ce4+/Ce3+ redox couple, and catalytically oxidized Hg0 into HgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Gaffney JS, Marley N (2014) In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Inter J Nanomed 9:1883–1889

    Google Scholar 

  2. Xu W, Adewuyi YG, Liu YX et al (2018) Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Process Technol 170:21–31

    Article  CAS  Google Scholar 

  3. Xie YE, Li CT, Zhao LK et al (2015) Experimental study on Hg0 removal from flue gas over columnar MnOx–CeO2/activated coke. Appl Surf Sci 333:59–67

    Article  CAS  Google Scholar 

  4. Liu YX, Wang Q, Pan JF et al (2015) A study on removal of elemental mercury in flue gas using fenton solution. J Hazard Mater 292:164–172

    Article  CAS  Google Scholar 

  5. Wang SX, Zhang L, Zhao B et al (2012) Mitigation potential of mercury emission form coal-fired power plants in China. Energy Fuels 26:4635–4642

    Article  CAS  Google Scholar 

  6. Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  7. Zhao B, Yi HH, Tang XL et al (2016) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593

    Article  CAS  Google Scholar 

  8. Wang FY, Wang SX, Zhang L et al (2016) Characteristics of mercury cycling in the cement production process. J Hazard Mater 302:27–35

    Article  Google Scholar 

  9. Li GL, Shen BX, Wang SJ et al (2015) Comparative study of elemental mercury removal by three bio-chars from various solid wastes. Fuel 145:189–195

    Article  CAS  Google Scholar 

  10. He C, Shen BX, Chen JH et al (2014) Adsorption and oxidation of elemental mercury over Ce–MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898

    Article  CAS  Google Scholar 

  11. Li GL, Shen BX, Li BX et al (2015) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50

    Article  CAS  Google Scholar 

  12. Zhang YS, Duan W, Liu Z et al (2014) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280

    Article  CAS  Google Scholar 

  13. Wu H, Liu H, Wang QH et al (2013) Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere. Proc Combust Inst 34:2847–2854

    Article  CAS  Google Scholar 

  14. Guo YF, Yan NQ, Yang SJ et al (2012) Conversion of elemental mercury with a novel membrane catalytic system at low temperature. J Hazard Mater 213–214:62–70

    Article  Google Scholar 

  15. Zhao Y, Hao RL, Zhang P et al (2014) An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8. Fuel 13:113–121

    Article  Google Scholar 

  16. Yang S, Zhang JY, Zhao YC et al (2010) Pre-investigation of nanostructured TiO2-activated carbon composites for photocatalytic oxidation removal of mercury vapor. J Eng Thermophys 31:339–342

    CAS  Google Scholar 

  17. Wang JC, Zhang YP, Han L et al (2013) Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103:73–79

    Article  CAS  Google Scholar 

  18. Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasification systems. Fuel 89:838–847

    Article  CAS  Google Scholar 

  19. Xu WQ, Wang HR, Zhu TY et al (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sc 25:393–398

    Article  CAS  Google Scholar 

  20. Mullett M, Pendleto P, Badalyan A (2012) Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chem Eng J 211:133–142

    Article  Google Scholar 

  21. Lee SJ, Seo Y, Lee TG (2004) Removal of gas-phase elemental mercury by iodine and chlorine-impregnated activated carbons. Atmos Environ 38:4887–4893

    Article  CAS  Google Scholar 

  22. Mei Z, Shen Z, Zhao Q et al (2008) Removal and recovery of gas-phase mercury by metal oxide-loaded activated carbon. J Hazard Mater 152:721–729

    Article  CAS  Google Scholar 

  23. Yang S, Guo Y, Yan N et al (2011) Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. J Hazard Mater 186:508–515

    Article  CAS  Google Scholar 

  24. Zhou J, Hou W, Qi P et al (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062

    Article  CAS  Google Scholar 

  25. Tian L, Li C, Li Q, Zeng G, Gao Z, Li S, Fan X (2009) Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel 88:1687–1691

    Article  CAS  Google Scholar 

  26. Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, Gao H (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy Fuels 24:4250–4254

    Article  CAS  Google Scholar 

  27. Hua XY, Zhou JS, Li Q, Luo ZY, Cen KF (2010) Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy Fuels 24:5426–5431

    Article  CAS  Google Scholar 

  28. Tao SS, Li CT, Fan XP et al (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556

    Article  CAS  Google Scholar 

  29. Zhang CM, Song W, Sun GH et al (2014) Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel. Ind Eng Chem 53:4271–4276

    Article  CAS  Google Scholar 

  30. Romero-Anaya AJ, Lillo-Ródenas MA, Linares-Solano A (2014) Activation of a spherical carbon for toluene adsorption at low concentration. Carbon 77:616–626

    Article  CAS  Google Scholar 

  31. Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303

    Article  CAS  Google Scholar 

  32. Zhang CM, Song W, Zhang XC et al (2018) Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture. J Mater Sci 53:9429–9448. https://doi.org/10.1007/s10853-018-2231-6

    Article  CAS  Google Scholar 

  33. Li YQ, Li KX (2011) Synthesis and characterization of mesoporous carbon with narrow pore size distribution derived from rare earth–macromolecule complexes. J Appl Polym Sci 121:3466–3474

    Article  CAS  Google Scholar 

  34. Oya A, Kimura M, Sugo T et al (1994) Antibacterial activated carbon fiber derived from methyl methacrylate-grafted phenolic resin fiber. Carbon 32:107–110

    Article  CAS  Google Scholar 

  35. Zhao S, Xu HM, Mei J et al (2017) Ag–Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel 200:236–243

    Article  CAS  Google Scholar 

  36. Shen W, Zheng J, Qin Z, Wang J (2003) Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. J Colloid Interface Sci 264:467–473

    Article  CAS  Google Scholar 

  37. Zhang CM, Song W, Sun GH, Xie LJ, Wang JL et al (2013) CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27:4818–4823

    Article  CAS  Google Scholar 

  38. Shi DL, Lu Y, Tang Z et al (2014) Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite. Korean J Chem Eng 31:1405–1412

    Article  CAS  Google Scholar 

  39. Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482

    Article  CAS  Google Scholar 

  40. Choma J, Jedynak K, Fahrenholz W et al (2014) Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Appl Surf Sci 289:592–600

    Article  CAS  Google Scholar 

  41. Chen SX, Chen JL, Qing WU (2006) Chemical structure modification of activated carbon fibers by cerous nitrate. New Carbon Mater 21:206–212

    CAS  Google Scholar 

  42. Wu J, Zhao Z, Huang TF et al (2017) Removal of elemental mercury by Ce–Mn co-modified activated carbon catalyst. Catal Commun 93:62–66

    Article  CAS  Google Scholar 

  43. Miguel SRD, Vilella JI, Jablonski EL et al (2002) Preparation of Pt catalysts supported on activated carbon felts (ACF). Appl Catal A-Gen 232:237–246

    Article  Google Scholar 

  44. Serrano-Ruiz JC, Ramos-Fernández EV, Silvestre-Albero J et al (2008) Preparation and characterization of CeO2 highly dispersed on activated carbon. Mater Res Bull 43:1850–1857

    Article  CAS  Google Scholar 

  45. Fallya F, Perrichona V, Vidal H et al (2000) Modification of the oxygen storage capacity of CeO2–ZrO2 mixed oxides after redox cycling aging. Catal Today 59:373–386

    Article  Google Scholar 

  46. Li GL, Shen BX, Li YW, Zhao B, Wang FM, He C, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169

    Article  CAS  Google Scholar 

  47. Shen BX, Tian LH, Li FK et al (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 272:28–37

    Google Scholar 

  48. Jun Z, Duan YF, Zhou Q et al (2016) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289

    Article  Google Scholar 

  49. Yang W, Liu YX, Wang Q, Pan JF (2017) Removal of elemental mercury from flue gas using straw chars modified by Mn–Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181

    Article  CAS  Google Scholar 

  50. Liu J, Qu W, Joo SW, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167

    Article  CAS  Google Scholar 

  51. Li H, Wu CY, Li Y et al (2011) CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400

    Article  CAS  Google Scholar 

  52. Qu Z, Xie JK, Xu HM et al (2015) Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature. Energy Fuel 29:6187–6196

    Article  CAS  Google Scholar 

  53. Liu J, Cheney MA, Wu F et al (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186:108–113

    Article  CAS  Google Scholar 

  54. Xu HM, Jia JP, Guo YF et al (2018) Design of 3D MnO2/carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. J Hazard Mater 342:69–76

    Article  CAS  Google Scholar 

  55. Tan Z, Sun L, Xiang J et al (2012) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50:362–371

    Article  CAS  Google Scholar 

  56. Zhu X, Gu J, Wang Y et al (2014) Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun 50:8779–8782

    Article  CAS  Google Scholar 

  57. Wan Q, Duan L, He KB, Li JH (2011) Removal of gaseous elemental mercury over a CeO2–WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 170:512–517

    Article  CAS  Google Scholar 

  58. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167

    Article  CAS  Google Scholar 

  59. Zhao LK, Li CT, Zhang J et al (2015) Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for ele- mental mercury oxidation in simulated coal-fired flue gas. Fuel 153:361–369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Nature Science Foundation of China (Nos. 51002166, 51172251 and 51061130536), National Science Foundation of China for Youths (Nos. 51402324 and 21706179), and National Science Foundation of ShanXi for Youths (Nos. 2015021107 and 201701D221037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changming Zhang or Xiaochao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Song, W., Zhang, X. et al. Synthesis of CeO2-modified activated carbon spheres by grafting and coordinating reactions for elemental mercury removal. J Mater Sci 54, 2836–2852 (2019). https://doi.org/10.1007/s10853-018-3019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3019-4

Keywords

Navigation