Skip to main content
Log in

A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Within decades of development, carbon nanomaterials such as carbon black, fullerene, carbon nanotube, carbon nanofiber, graphene and their combined nanofillers have been tremendously applied in polymer material industries, generating a series of fascinating multifunctional composites in the fields from portable electronic devices, sports, entertainments to automobile, aerospace and military. Among the various material properties of the composites, electrical conductivity and mechanical performance are the two most important parameters for evaluating the effectiveness of nanofillers in the polymer matrices. In this review, we focus on the electrical and mechanical properties of diverse dimensional carbon nanofillers (e.g., zero-, one-, two-, three-dimensional nanofillers or their combinations)-reinforced polymer composites to seek the most efficient and effective approach to obtain high-performance polymeric nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Reproduced with permission from [17]. Copyright: 2017 Elsevier

Figure 3

Reproduced with permission from [20]. Copyright: 2018 American Chemical Society

Figure 4

Reproduced with permission from [180]. Copyright: 2016 Elsevier

Figure 5

Reproduced with permission from [48]. Copyright: 2018 Elsevier

Figure 6

Reproduced with permission from [37]. Copyright: 2013 Elsevier

Figure 7
Figure 8

Reproduced with permission from [70]. Copyright: 2014 RSC Publishing

Figure 9

Reproduced with permission from [67]. Copyright: 2014 RSC Publishing

Figure 10

Reproduced with permission from [63]. Copyright: 2009 Elsevier

Figure 11

Reproduced with permission from [6]. Copyright: 2014 Elsevier

Figure 12

Reproduced with permission from [198]. Copyright: 2015 Royal Society of Chemistry

Figure 13
Figure 14
Figure 15

Reproduced with permission from [130]. Copyright: 2012 American Chemical Society

Figure 16

Reproduced with permission from [148]. Copyright: 2013 American Chemical Society

Figure 17

Reproduced with permission from [154]. Copyright: 2013 American Chemical Society

Figure 18

Reproduced with permission from [161]. Copyright: 2017 Elsevier

Figure 19
Figure 20

Reproduced with permission from [164]. Copyright: 2017 Elsevier

Figure 21

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

APTES:

Aminopropyltriethoxysilane

CB:

Carbon black

CNF:

Carbon nanofiber

CNT:

Carbon nanotube

CTAVB:

Cetyltrimethylammounium 4-vinylbenzoate

CVD:

Chemical vapor deposition

DBSA:

Dodecylbenzenesulfonic acid

DMF:

Dimethylformamide

EBA:

Ethylene-butyl acrylate

EDA:

Ethylenediamine

EMI:

Electromagnetic interference shielding

ESO:

Epoxidized soybean oil

GNP:

Graphite nanoplatelet

GO:

Graphene oxide

HDPE:

High-density polyethylene

LLDPE:

Linear low-density polyethylene

MWCNT:

Multi-walled carbon nanotube

NBR:

Acrylonitrile butadiene

NP:

Nanoparticle

ODA:

Octadecylamine

PA-6:

Polyamide-6

PANI:

Polyaniline

PC:

Polycarbonate

PDLA:

Poly(d-lactide)

PDMS:

Poly(dimethylsiloxane)

PE:

Polyethylene

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEG:

Polyethylene glycol

PEI:

Polyetherimide

PES:

Poly(ether sulfone)

PGMA:

Poly(glycidyl methacrylate)

PI:

Polyimide

PLA:

Polylactic acid

PLLA:

Poly(l-lactide)

PMMA:

Polymethylmethacrylate

POM:

Polyoxymethylene

PP:

Polypropylene

PPD:

p-Phenylenediamine

PS:

Polystyrene

PSS:

Polystyrene sulfate

PPE:

Polyphenylene ethynylene

PVDF:

Polyvinylidenefluoride

PVA:

Poly(vinylacetate)

PVP:

Polyvinylpyrrolidone

SAN:

Styrene-acrylonitrile

SDS:

Sodium dodecyl sulfate

SDBS:

Sodium dodecylbenzene sulfonate

RGO:

Reduced graphene oxide

SWCNT:

Single-walled carbon nanotube

THF:

Tetrahydrofuran

TPU:

Thermoplastic polyurethane

UHMWPE:

Ultra high molecular weight polyethylene

UV/O3 :

Ultraviolet/ozone

References

  1. Friedrich K, Breuer U (2015) Multifunctionality of polymer composites. William Andrew, Norwich

    Google Scholar 

  2. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810

    Google Scholar 

  3. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410

    CAS  Google Scholar 

  4. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    CAS  Google Scholar 

  5. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367

    Google Scholar 

  6. Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39(11):1908–1933

    CAS  Google Scholar 

  7. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84

    CAS  Google Scholar 

  8. Li Y, Li R, Lu L, Huang X (2015) Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos Part A Appl Sci Manuf 79:164–175

    CAS  Google Scholar 

  9. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    CAS  Google Scholar 

  10. Chemartin L, Lalande P, Peyrou B, Chazottes A, Elias PQ (2012) Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints. J Aerosp Lab 5(AL05-09):1–15

    Google Scholar 

  11. Alam MK, Islam MT, Mina MF, Gafur MA (2014) Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J Appl Polym Sci 131:40421

    Google Scholar 

  12. Zhou S, Hrymak A, Kamal M (2017) Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites. J Appl Polym Sci 134(43):45462

    Google Scholar 

  13. Shepherd C, Hadzifejzovic E, Shkal F, Jurkschat K, Moghal J, Parker EM, Sawangphruk M, Slocombe DR, Foord JS, Moloney MG (2016) New routes to functionalize carbon black for polypropylene nanocomposites. Langmuir 32(31):7917–7928

    CAS  Google Scholar 

  14. Gong T, Peng SP, Bao RY, Yang W, Xie BH, Yang MB (2016) Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos Part B Eng 99:348–357

    CAS  Google Scholar 

  15. Zhang Q, Wang J, Yu J, Guo ZX (2017) Improved electrical conductivity of TPU/carbon black composites by addition of COPA and selective localization of carbon black at the interface of sea-island structured polymer blends. Soft Matter 13(18):3431–3439

    CAS  Google Scholar 

  16. Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai H, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16

    CAS  Google Scholar 

  17. Chen J, Cui X, Sui K, Zhu Y, Jiang W (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105

    CAS  Google Scholar 

  18. Zhang Q, Zhang BY, Guo ZX, Yu J (2017) Comparison between the efficiencies of two conductive networks formed in carbon black-filled ternary polymer blends by different hierarchical structures. Polym Test 63:141–149

    CAS  Google Scholar 

  19. Phua JL, Teh PL, Ghani SA, Yeoh CK (2017) Influence of thermoplastic spacer on the mechanical, electrical, and thermal properties of carbon black filled epoxy adhesives. Polym Adv Technol 28(3):345–352

    CAS  Google Scholar 

  20. Liu H, Bai D, Bai H, Zhang Q, Fu Q (2018) Manipulating the filler network structure and properties of polylactide/carbon black nanocomposites with the aid of stereocomplex crystallites. J Phys Chem C 122(8):4232–4240

    CAS  Google Scholar 

  21. Zuev VV, Ivanova YG (2012) Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polym Eng Sci 52(6):1206–1211

    CAS  Google Scholar 

  22. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    CAS  Google Scholar 

  23. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67(5):922–928

    CAS  Google Scholar 

  24. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A Appl Sci Manuf 34(8):689–694

    Google Scholar 

  25. Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 66(10):1285–1288

    CAS  Google Scholar 

  26. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971

    CAS  Google Scholar 

  27. Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30

    Google Scholar 

  28. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102

    Google Scholar 

  29. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215

    CAS  Google Scholar 

  30. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998

    CAS  Google Scholar 

  31. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385

    CAS  Google Scholar 

  32. Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972

    CAS  Google Scholar 

  33. Tseng CH, Wang CC, Chen CY (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19(2):308–315

    CAS  Google Scholar 

  34. Fogel M, Parlevliet P, Geistbeck M, Olivier P, Dantras E (2015) Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices. Compos Sci Technol 110:118–125

    CAS  Google Scholar 

  35. Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505

    CAS  Google Scholar 

  36. Ghaleb ZA, Mariatti M, Ariff ZM (2014) Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: the effect of sonication time and filler loading. Compos Part A Appl Sci Manuf 58:77–83

    CAS  Google Scholar 

  37. Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A Appl Sci Manuf 49:26–34

    CAS  Google Scholar 

  38. Mecklenburg M, Mizushima D, Ohtake N, Bauhofer W, Fiedler B, Schulte K (2015) On the manufacturing and electrical and mechanical properties of ultra-high wt% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon 91:275–290

    CAS  Google Scholar 

  39. Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30(5):548–556

    CAS  Google Scholar 

  40. Mei H, Xia J, Han D, Xiao S, Deng J, Cheng L (2016) Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chem Eng J 304:970–976

    CAS  Google Scholar 

  41. Vahedi F, Shahverdi HR, Shokrieh MM, Esmkhani M (2014) Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites. New Carbon Mater 29(6):419–425

    Google Scholar 

  42. Ervina J, Mariatti M, Hamdan S (2017) Mechanical, electrical and thermal properties of multi-walled carbon nanotubes/epoxy composites: effect of post-processing techniques and filler loading. Polym Bull 74(7):2513–2533

    CAS  Google Scholar 

  43. Gantayat S, Sarkar N, Prusty G, Rout D, Swain SK (2018) Designing of epoxy matrix by chemically modified multiwalled carbon nanotubes. Adv Polym Technol 37(1):176–184

    CAS  Google Scholar 

  44. Zaidi MGH, Joshi SK, Kumar M, Sharma D, Kumar A, Alam S, Sah PL (2013) Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide. Carbon Lett 14(4):218–227

    Google Scholar 

  45. Koo MY, Shin HC, Kim WS, Lee GW (2014) Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing. Carbon Lett 15:255–261

    Google Scholar 

  46. Wang Y, Chai M, Zhao H, Zhao X, Ji P (2016) Improvement of dispersion of carbon nanotubes in epoxy resin through pyrogallol functionalization. Polym Eng Sci 56(9):1079–1085

    CAS  Google Scholar 

  47. Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y (2012) Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci 125(S1):E334–E341

    CAS  Google Scholar 

  48. Li Y, Li R, Fu X, Wang Y, Zhong WH (2018) A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224

    CAS  Google Scholar 

  49. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer 46(12):4405–4420

    CAS  Google Scholar 

  50. Kim YJ, An KJ, Suh KS, Choi HD, Kwon JH, Chung YC, Kim WN, Lee AK, Choi JI, Yoon HG (2005) Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application. IEEE Trans Electromagn Compat 47(4):872–879

    Google Scholar 

  51. Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG (2010) Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett 11(2):96–101

    Google Scholar 

  52. Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Pol Chem 43(17):3973–3985

    CAS  Google Scholar 

  53. Shamsi R, Mahyari M, Koosha M (2017) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: mechanical, thermal, and electrical properties. J Appl Polym Sci 134(10):44567

    Google Scholar 

  54. Yakovlev YV, Gagolkina ZO, Lobko EV, Khalakhan I, Klepko VV (2017) The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Compos Sci Technol 144:208–214

    CAS  Google Scholar 

  55. Martinez-Rubi Y, Ashrafi B, Jakubinek MB, Zou S, Laqua K, Barnes M, Simard B (2017) Fabrication of high content carbon nanotube-polyurethane sheets with tailorable properties. ACS Appl Mater Interfaces 9(36):30840–30849

    CAS  Google Scholar 

  56. Hajializadeh S, Barikani M, Bellah SM (2017) Synthesis and characterization of multiwall carbon nanotube/waterborne polyurethane nanocomposites. Polym Int 66(7):1074–1083

    CAS  Google Scholar 

  57. Jiang F, Zhang L, Jiang Y, Lu Y, Wang W (2012) Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 126(3):845–852

    CAS  Google Scholar 

  58. Wang W, Jiang F, Jiang Y, Lu Y, Zhang L (2012) Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. J Appl Polym Sci 126(3):789–795

    CAS  Google Scholar 

  59. Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Compos 33(11):1866–1873

    CAS  Google Scholar 

  60. Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: an assessment through electrical conductivity. Chem Phys Lett 432(4–6):480–485

    CAS  Google Scholar 

  61. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748

    CAS  Google Scholar 

  62. Ryu J, Han M (2014) Improvement of the mechanical and electrical properties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes. Compos Sci Technol 102:169–175

    CAS  Google Scholar 

  63. Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134

    CAS  Google Scholar 

  64. Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255

    Google Scholar 

  65. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930

    CAS  Google Scholar 

  66. Hornbostel B, Pötschke P, Kotz J, Roth S (2006) Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys Status Solidi B 243(13):3445–3451

    CAS  Google Scholar 

  67. Maiti S, Suin S, Shrivastava NK, Khatua BB (2014) A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes. RSC Adv 4(16):7979–7990

    CAS  Google Scholar 

  68. Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R, Pötschke P (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52(17):3835–3845

    CAS  Google Scholar 

  69. Choi EY, Kim JY, Kim CK (2015) Fabrication and properties of polycarbonate composites with polycarbonate grafted multi-walled carbon nanotubes by reactive extrusion. Polymer 60:18–25

    CAS  Google Scholar 

  70. Babal AS, Gupta R, Singh BP, Singh VN, Dhakate SR, Mathur RB (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4(110):64649–64658

    CAS  Google Scholar 

  71. Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Pol Phys 52(1):73–83

    CAS  Google Scholar 

  72. Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci Pol Phys 45(5):597–606

    CAS  Google Scholar 

  73. Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105(1):158–168

    CAS  Google Scholar 

  74. Gao JF, Li ZM, Meng Q, Yang Q (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater Lett 62(20):3530–3532

    CAS  Google Scholar 

  75. Al-Saleh MH, Jawad SA, El Ghanem HM (2014) Electrical and dielectric behaviors of dry-mixed CNT/UHMWPE nanocomposites. High Perform Polym 26(2):205–211

    Google Scholar 

  76. Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F (2017) Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer 111:204–213

    CAS  Google Scholar 

  77. Pang H, Bao Y, Chen C, Lei J, Ji X, Chen J, Li ZM (2012) Influence of the compaction temperature on the electrical and mechanical properties of the segregated conductive ultrahigh molecular weight polyethylene/carbon nanotube composite. Polym Plast Technol 51(15):1530–1536

    CAS  Google Scholar 

  78. Xiang D, Harkin-Jones E, Linton D, Martin P (2015) Structure, mechanical and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion. J Appl Polym Sci 132(42):42665

    Google Scholar 

  79. Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3(8):564–568

    CAS  Google Scholar 

  80. Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scr Mater 57(6):461–464

    CAS  Google Scholar 

  81. Seo MK, Park SJ (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395(1–3):44–48

    CAS  Google Scholar 

  82. Ghislandi M, Tkalya E, Marinho B, Koning CE (2013) Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites. Compos Part A Appl Sci Manuf 53:145–151

    CAS  Google Scholar 

  83. Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater Des 88:269–277

    CAS  Google Scholar 

  84. Wu HY, Jia LC, Yan DX, Gao JF, Zhang XP, Ren PG, Li ZM (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94

    CAS  Google Scholar 

  85. Ngabonziza Y, Li J, Barry CF (2011) Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech 220(1–4):289–298

    Google Scholar 

  86. Stan F, Sandu LI, Fetecau C, Rosculet R (2017) Effect of reprocessing on the rheological, electrical, and mechanical properties of polypropylene/carbon nanotube composites. J Micro Nano Manuf 5(2):021005

    Google Scholar 

  87. Ayewah DOO, Davis DC, Krishnamoorti R, Lagoudas DC, Sue HJ, Willson M (2010) A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties. Compos Part A Appl Sci Manuf 41(7):842–849

    Google Scholar 

  88. Ibrahim SS, Ayesh AS, Abdel-Rahem RA (2017) Investigation on the physical properties of multiwalled carbon nanotube–polystyrene nanocomposites treated with 2, 3-hydroxy-2-naphthoic acid. J Thermoplast Compos Mater 30(8):1120–1135

    CAS  Google Scholar 

  89. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43(3):949–958

    CAS  Google Scholar 

  90. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406

    CAS  Google Scholar 

  91. Paul A, Grady BP, Ford WT (2012) Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Polym Int 61(11):1603–1610

    CAS  Google Scholar 

  92. Hermant MC, Smeets NMB, van Hal RCF, Meuldijk J, Heuts HP, Klumperman B, van Herk AM, Koning CE (2009) Influence of the molecular weight distribution on the percolation threshold of carbon nanotube-polystyrene composites. e-Polymers 9(1). https://doi.org/10.1515/epoly.2009.9.1.248

  93. Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube–polymer composites using latex technology. Adv Mater 16(3):248–251

    CAS  Google Scholar 

  94. Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67(5):829–839

    CAS  Google Scholar 

  95. Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15(24):2349–2352

    CAS  Google Scholar 

  96. Yu J, Lu K, Sourty E, Grossiord N, Koning CE (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45(15):2897–2903

    CAS  Google Scholar 

  97. Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the crucial role of wetting in the preparation of conductive polystyrene–carbon nanotube composites. Chem Mater 19(15):3787–3792

    CAS  Google Scholar 

  98. Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127(6):4557–4563

    CAS  Google Scholar 

  99. Kalakonda P, Banne S (2017) Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol Sci Appl 10:45–52

    CAS  Google Scholar 

  100. Ryu SH, Cho HB, Moon JW, Kwon YT, Eom NSA, Lee S, Hussain M, Choa YH (2016) Highly conductive polymethly(methacrylate)/multi-wall carbon nanotube composites by modeling a three-dimensional percolated microstructure. Compos Part A Appl Sci Manuf 91:133–139

    CAS  Google Scholar 

  101. Skakalova V, Dettlaff-Weglikowska U, Roth S (2005) Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synth Met 152(1–3):349–352

    CAS  Google Scholar 

  102. Kim HM, Choi MS, Joo J, Cho SJ, Yoon HS (2006) Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys Rev B 74(5):054202

    Google Scholar 

  103. Dettlaff-Weglikowska U, Kaempgen M, Hornbostel B, Skakalova V, Wang J, Liang J, Roth S (2006) Conducting and transparent SWNT/polymer composites. Phys Status Solidi B 243(13):3440–3444

    CAS  Google Scholar 

  104. Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos Part A Appl Sci Manuf 42(8):961–967

    Google Scholar 

  105. Dhibar S, Das CK (2014) Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res 53(9):3495–3508

    CAS  Google Scholar 

  106. Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5(12):853–857

    CAS  Google Scholar 

  107. Kim KS, Park SJ (2011) Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. J Solid State Chem 184(10):2724–2730

    CAS  Google Scholar 

  108. Shim JJ (2011) Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synth Met 161(19–20):2078–2082

    Google Scholar 

  109. Choi K, Yu C (2012) Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. PLoS ONE 7(9):e44977

    CAS  Google Scholar 

  110. Yuen SM, Ma CCM, Chuang CY, Hsiao YH, Chiang CL, Yu AD (2008) Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Compos Part A Appl Sci Manuf 39(1):119–125

    Google Scholar 

  111. Alam J, Khan A, Alam M, Mohan R (2015) Electroactive shape memory property of a Cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials 8(9):6391–6400

    CAS  Google Scholar 

  112. Hawkins SA, Yao H, Wang H, Sue HJ (2017) Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes. Carbon 115:18–27

    CAS  Google Scholar 

  113. Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704

    Google Scholar 

  114. Paleo AJ, Sencadas V, van Hattum FWJ, Lanceros-Méndez S, Ares A (2014) Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polym Eng Sci 54:117–128

    CAS  Google Scholar 

  115. Bal S, Saha S (2014) Comparison and analysis of physical properties of carbon nanomaterial-doped polymer composites. High Perform Polym 26:953–960

    Google Scholar 

  116. Varela-Rizo H, Bittolo-Bon S, Rodriguez-Pastor I, Valentini L, Martin-Gullon I (2012) Processing and functionalization effect in CNF/PMMA nanocomposites. Compos Part A Appl Sci Manuf 43:711–721

    CAS  Google Scholar 

  117. Li Y, Ji J, Wang Y, Li R, Zhong WH (2018) Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity. J Mater Sci 53(11):8653–8665. https://doi.org/10.1007/s10853-018-2121-y

    Article  CAS  Google Scholar 

  118. Jimenez GA, Jana SC (2007) Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Compos Part A Appl Sci Manuf 38:983–993

    Google Scholar 

  119. Roy N, Bhowmick AK (2011) In situ preparation, morphology and electrical properties of carbon nanofiber/polydimethylsiloxane nanocomposites. J Mater Sci 47:272–281. https://doi.org/10.1007/s10853-011-5795-y

    Article  CAS  Google Scholar 

  120. Mapkar JA, Belashi A, Berhan LM, Coleman MR (2013) Formation of high loading flexible carbon nanofiber network composites. Compos Sci Technol 75:1–6

    CAS  Google Scholar 

  121. Mondal S, Nayak L, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2017) An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Compos Part B Eng 109:155–169

    CAS  Google Scholar 

  122. Li J, Sham M, Kim J, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Technol 67(2):296–305

    CAS  Google Scholar 

  123. Wajid AS, Ahmed HST, Das S, Irin F, Jankowski AF, Green MJ (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298(3):339–347

    CAS  Google Scholar 

  124. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    CAS  Google Scholar 

  125. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888

    CAS  Google Scholar 

  126. Jović N, Dudić D, Montone A, Antisari MV, Mitrić M, Djoković V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr Mater 58(10):846–849

    Google Scholar 

  127. Tien DH, Park J, Han SA, Ahmad M, Seo Y, Shin K (2011) Electrical and thermal conductivities of stycast 1266 epoxy/graphite composites. J Korean Phys Soc 59(4):2760–2764

    CAS  Google Scholar 

  128. Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236

    CAS  Google Scholar 

  129. Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4:7211–7220

    CAS  Google Scholar 

  130. Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4(5):2630–2636

    CAS  Google Scholar 

  131. Wang D, Zhang X, Zha JW, Zhao J, Dang ZM, Hu GH (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54(7):1916–1922

    CAS  Google Scholar 

  132. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    CAS  Google Scholar 

  133. Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20(15):3035–3039

    CAS  Google Scholar 

  134. Long G, Tang C, Wong KW, Man C, Fan M, Lau WM, Xu T, Wang B (2013) Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem 15(3):821–828

    CAS  Google Scholar 

  135. Wu C, Huang X, Wang G, Lv L, Chen G, Li G, Jiang P (2013) Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv Funct Mater 23(4):506–513

    CAS  Google Scholar 

  136. Jun YS, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos Part B Eng 133:218–225

    CAS  Google Scholar 

  137. Ryu SH, Shanmugharaj AM (2014) Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem Eng J 244:552–560

    CAS  Google Scholar 

  138. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48(18):6223–6232. https://doi.org/10.1007/s10853-013-7420-8

    Article  CAS  Google Scholar 

  139. Wang C, Lan Y, Li X, Yu W, Qian Y (2016) Improving the mechanical, electrical, and thermal properties of polyimide by incorporating functionalized graphene oxide. High Perform Polym 28(7):800–808

    CAS  Google Scholar 

  140. Qian Y, Wu H, Yuan D, Li X, Yu W, Wang C (2015) In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci 132(44):1006–1016

    Google Scholar 

  141. Wang P, Chong H, Zhang J, Lu H (2017) Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl Mater Interfaces 9(26):22006–22017

    CAS  Google Scholar 

  142. Lago E, Toth PS, Pugliese G, Pellegrini V, Bonaccorso F (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Adv 6(100):97931–97940

    CAS  Google Scholar 

  143. Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637

    CAS  Google Scholar 

  144. Tang G, Jiang ZG, Li X, Zhang HB, Dasari A, Yu ZZ (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599

    CAS  Google Scholar 

  145. Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    CAS  Google Scholar 

  146. Athanasopoulos N, Baltopoulos A, Matzakou M, Vavouliotis A, Kostopoulos V (2012) Electrical conductivity of polyurethane/MWCNT nanocomposite foams. Polym Compos 33(8):1302–1312

    CAS  Google Scholar 

  147. Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924

    CAS  Google Scholar 

  148. Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684

    CAS  Google Scholar 

  149. Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ (2011) Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams. J Appl Polym Sci 120(5):3014–3019

    CAS  Google Scholar 

  150. You KM, Park SS, Lee CS, Kim JM, Park GP, Kim WN (2011) Preparation and characterization of conductive carbon nanotube-polyurethane foam composites. J Mater Sci 46(21):6850–6855. https://doi.org/10.1007/s10853-011-5645-y

    Article  CAS  Google Scholar 

  151. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898

    CAS  Google Scholar 

  152. Yue J, Xu Y, Bao J (2017) Epoxy–carbon black composite foams with tunable electrical conductivity and mechanical properties: foaming improves the conductivity. J Appl Polym Sci 134(33):45071

    Google Scholar 

  153. Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300

    CAS  Google Scholar 

  154. Jia J, Sun X, Lin X, Shen X, Mai YW, Kim JK (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6):5774–5783

    CAS  Google Scholar 

  155. Li Q, Chen L, Li X, Zhang J, Zhang X, Zheng K, Fang F, Zhou H, Tian X (2016) Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in situ polymerization. Compos Part A Appl Sci Manuf 82:214–225

    CAS  Google Scholar 

  156. Embrey L, Nautiyal P, Loganathan A, Idowu A, Boesl B, Agarwal A (2017) Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties. ACS Appl Mater Interfaces 9(45):39717–39727

    CAS  Google Scholar 

  157. Xu Y, Li Y, Bao J, Zhou T, Zhang A (2016) Rigid thermosetting epoxy/multi-walled carbon nanotube foams with enhanced conductivity originated from a flow-induced concentration effect. RSC Adv 6(44):37710–37720

    CAS  Google Scholar 

  158. Chen Y, Zhang HB, Yang Y, Wang M, Cao A, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26(3):447–455

    CAS  Google Scholar 

  159. Ariño R, Álvarez E, Rigdahl M (2015) Enhancing the electrical conductivity of carbon black/graphite nanoplatelets: poly(ethylene-butyl acrylate) composites by melt extrusion. J Appl Polym Sci 133(3):42897

    Google Scholar 

  160. Cui CH, Pang H, Yan DX, Jia LC, Jiang X, Lei J, Li ZM (2015) Percolation and resistivity-temperature behaviours of carbon nanotube-carbon black hybrid loaded ultrahigh molecular weight polyethylene composites with segregated structures. RSC Adv 5(75):61318–61323

    CAS  Google Scholar 

  161. Mondal S, Khastgir D (2017) Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT. Compos Part A Appl Sci Manuf 102:154–165

    CAS  Google Scholar 

  162. Che J, Wu K, Lin Y, Wang K, Fu Q (2017) Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos Part A Appl Sci Manuf 99:32–40

    CAS  Google Scholar 

  163. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets-dispersion and synergy effects. Carbon 78:268–278

    CAS  Google Scholar 

  164. Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide @ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513

    CAS  Google Scholar 

  165. Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur Polym J 49(10):3125–3134

    CAS  Google Scholar 

  166. Kim M, Kang GH, Park HW, Park YB, Park YH, Yoon KH (2012) Design, manufacturing, and characterization of high-performance lightweight bipolar plates based on carbon nanotube-exfoliated graphite nanoplatelet hybrid nanocomposites. J Nanomater 2012:1–8

    Google Scholar 

  167. Ghaleb ZA, Mariatti M, Ariff ZM (2017) Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J Reinf Plast Compos 36(9):685–695

    CAS  Google Scholar 

  168. Liu YT, Dang M, Xie XM, Wang ZF, Ye XY (2011) Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites. J Mater Chem 21(46):18723–18729

    CAS  Google Scholar 

  169. Kim J, Kim SW, Yun H, Kim BJ (2017) Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 7(48):30221–30228

    CAS  Google Scholar 

  170. Lin JH, Lin ZI, Pan YJ, Chen CK, Huang CL, Huang CH, Lou CW (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211

    CAS  Google Scholar 

  171. Wegrzyn M, Ortega A, Benedito A, Gimenez E (2015) Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. J Appl Polym Sci 132(37):42536

    Google Scholar 

  172. Manjaly Poulose A, Anis A, Shaikh H, George J, Al-Zahrani SM (2017) Effect of plasticizer on the electrical, thermal, and morphological properties of carbon black filled poly (propylene). Polym Compos 38(11):2472–2479

    CAS  Google Scholar 

  173. Zhang X, Liu J, Wang Y, Wu W (2017) Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites. R Soc Open Sci 4(12):170769

    Google Scholar 

  174. Afzal A, Kausar A, Siddiq M (2016) Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review. Polym Plast Technol 55(18):1988–2011

    CAS  Google Scholar 

  175. Ahmed HM, Windham AD, Al-Ejji MM, Al-Qahtani NH, Hassan MK, Mauritz KA, Buchanan RK, Buchanan JP (2015) Preparation and preliminary dielectric characterization of structured C60-Thiol-Ene polymer nanocomposites assembled using the Thiol-Ene click reaction. Materials 8(11):7795–7804

    CAS  Google Scholar 

  176. Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: effect of surface modification of fullerene. Compos Part B Eng 80:101–107

    CAS  Google Scholar 

  177. Badamshina E, Estrin Y, Gafurova M (2013) Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application. J Mater Chem A 1(22):6509–6529

    CAS  Google Scholar 

  178. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    CAS  Google Scholar 

  179. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  180. Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62

    CAS  Google Scholar 

  181. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  182. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    CAS  Google Scholar 

  183. Sun ML (2002) Application principle and theory of epoxy resins. China Machine Press, Beijing, pp 115–140

    Google Scholar 

  184. Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475

    CAS  Google Scholar 

  185. Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113

    CAS  Google Scholar 

  186. Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551–1557

    CAS  Google Scholar 

  187. Park SH, Bandaru PR (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51:5071–5077

    CAS  Google Scholar 

  188. Simmons TJ, Hashim D, Vajtai R, Ajayan PM (2007) Large area-aligned arrays from direct deposition of single-wall carbon nanotube inks. J Am Chem Soc 129:10088–10089

    CAS  Google Scholar 

  189. Hu Z, Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L (2010) Layer-by-layer assembly of poly(sodium 4-styrenesulfonate) wrapped multi-walled carbon nanotubes with polyaniline nanofibers and its electrochemistry. Carbon 48:3729–3736

    CAS  Google Scholar 

  190. Ben-Valid S, Dumortier H, Decossas M, Sfez R, Meneghetti M, Bianco A, Yitzchaik S (2010) Polyaniline-coated single-walled carbon nanotubes: synthesis, characterization and impact on primary immune cells. J Mater Chem 20:2408–2417

    CAS  Google Scholar 

  191. Jiang H, Du C, Zou Z, Li X, Akins DL, Yang H (2009) A biosensing platform based on horseradish peroxidase immobilized onto chitosan-wrapped single-walled carbon nanotubes. J Solid State Electrochem 13:791–798

    CAS  Google Scholar 

  192. Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 20(11):301

    Google Scholar 

  193. Ayesh AS, Ibrahim SS, Al-Jaafari AA, Abdel-Rahem RA, Sheikh NS, Kotb HM (2015) Electrical and mechanical properties of β-hydroxynaphthoic acid-multiwalled carbon nanotubes-polystyrene nanocomposites. J Thermoplast Compos Mater 28(6):863–878

    CAS  Google Scholar 

  194. Jiang H, Zhu L, Moon KS, Wong C (2007) The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 45(3):655–661

    CAS  Google Scholar 

  195. Tzitzios V, Georgakilas V, Oikonomou E, Karakassides M, Petridis D (2006) Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon 44(5):848–853

    CAS  Google Scholar 

  196. Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang JL (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3):363–372

    CAS  Google Scholar 

  197. Li X, Liu Y, Fu L, Cao L, Wei D, Wang Y (2006) Efficient synthesis of carbon nanotube-nanoparticle hybrids. Adv Funct Mater 16(18):2431–2437

    CAS  Google Scholar 

  198. Kumar A, Singh AP, Kumari S, Srivastava A, Bathula S, Dhawan S, Dutta P, Dhar A (2015) EM shielding effectiveness of Pd–CNT–Cu nanocomposite buckypaper. J Mater Chem A 3(26):13986–13993

    CAS  Google Scholar 

  199. Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6(1):75–90

    CAS  Google Scholar 

  200. Dai K, Shi L, Fang J, Zhang Y (2007) Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes. Mater Sci Eng A 465(1–2):283–286

    Google Scholar 

  201. Chowdhury S, Olima M, Liu Y, Saha M, Bergman J, Robison T (2016) Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. Int J Smart Nano Mater 7:236–247

    Google Scholar 

  202. Gumel AM, Annuar MSM, Ishak KA, Ahmad N (2014) Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties. J Nanomater 2014:1–10

    Google Scholar 

  203. Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224

    CAS  Google Scholar 

  204. Nie Y, Hübert T (2011) Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym Int 60:1574–1580

    CAS  Google Scholar 

  205. Ajeesh G, Bhowmik S, Sivakumar V, Varshney L, Kumar V, Abraham M (2016) Influence of surface activated carbon nano fiber on thermo-mechanical properties of high performance polymeric nano composites. J Compos Mater 51:1057–1072

    Google Scholar 

  206. Kasgoz A, Akın D, Durmus A (2015) Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites. J Appl Polym Sci 132:42313

    Google Scholar 

  207. Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41:889–893

    CAS  Google Scholar 

  208. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  209. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    CAS  Google Scholar 

  210. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28

    CAS  Google Scholar 

  211. Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614. https://doi.org/10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  212. Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22(7):2213–2218

    CAS  Google Scholar 

  213. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437

    CAS  Google Scholar 

  214. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Conductive carbon nanofiber-polymer foam structures. Adv Mater 17:1999–2003

    CAS  Google Scholar 

  215. Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387

    CAS  Google Scholar 

  216. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621

    CAS  Google Scholar 

  217. Zhang H, Wang C, Zhang Y (2015) Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon black-graphene hybrid filler. J Appl Polym Sci 132(3):41309

    Google Scholar 

  218. Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10(2):2184–2192

    CAS  Google Scholar 

  219. Bian J, Wang G, Lin HL, Zhou X, Wang ZJ, Xiao WQ, Zhao XW (2017) HDPE composites strengthened-toughened synergistically by l-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials. J Appl Polym Sci 134:45055

    Google Scholar 

  220. Ma L, Wang G, Dai J (2016) Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites. J Appl Polym Sci 134(11):44575

    Google Scholar 

Download references

Acknowledgements

This work is sponsored by Project funded by China Postdoctoral Science Foundation (Grant No. 2016M602304), Hubei Chenguang Talented Youth Development Foundation (HBCG) and Ministry of Science and Technology-China Fund Project (Grant No. 2015DFA81640).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renfu Li, Yu Wang or Wei-Hong Zhong.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, X., Zeng, L. et al. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54, 1036–1076 (2019). https://doi.org/10.1007/s10853-018-3006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3006-9

Keywords

Navigation