Skip to main content
Log in

Silicon microstructures through the production of silicon nanowires by metal-assisted chemical etching, used as sacrificial material

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple, inexpensive and wafer-scale method to obtain Si microstructures is proposed. The method consists in a sequence of steps that include a selective metal-assisted chemical etching process to create regions of Si nanowires that are sacrificed in a post-etching process, leaving microstructures standing. As a proof of concept, Si micropillars with length of 7 µm and diameter of 1.4 µm were fabricated. The advantage of the proposed method is its simplicity, allowing the production of microstructures in a basic chemical laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6:1809–1813

    Article  Google Scholar 

  2. Higurashi E, Ukita H, Tanaka H, Ohguchi O (1994) Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl Phys Lett 64:62209–62210

    Article  Google Scholar 

  3. Sze S (2008) Lithography and etching. In: Sze S (ed) Semiconductor devices: physics and technology. Wiley, New York, pp 404–451

    Google Scholar 

  4. Mahalik N (2008) Micromanufacturing and nanotechnology. Springer, Berlin

    Google Scholar 

  5. Johnstone R, Parmaswaran A (2004) An introduction to surface-micromachining. Springer, New York

    Book  Google Scholar 

  6. Kusdterer J, Kohn E (2009) CVD diamond MEMS. In: Sussmann R (ed) CVD diamond for electronic devices and sensors. Wiley, London, pp 469–548

    Google Scholar 

  7. Wolffenbuttel RF (1996) Development of compatible micromachining processes in silicon. In: Wolffenbuttel RF (ed) Silicon sensors and circuits: on-chip compatibility. Springer, London, pp 55–114

    Google Scholar 

  8. Ataka M, Omodaka A, Fujita H (1993) A biomimetic micro motion system-a ciliary motion system. In: Proceeding of the international conference on transducers, Yocohama

  9. Shimaoka K, Tabata O, Kimura K, Sugiyama S (1993) Micro diaphragm pressure sensor using polysilicon sacrificial layer etch-stop technique. In: Proceeding of the international conference on transducers, Yokohama

  10. Jiang H, Yoo K, Yeh J, Li Z, Tien N (2001) Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate. J Micromech Microeng 12:87–95

    Article  Google Scholar 

  11. Lerner B, Perez M, Toro C, Lasorsa C, Rinaldi CA, Boselli A, Lamagna A (2012) Generation of cavities in silicon wafers by laser ablation using silicon nitride as sacrificial layer. Appl Surf Sci 258:2914–2919

    Article  CAS  Google Scholar 

  12. Yong D, Gwen L, Peng C, Litian L, Zhijian L (2002) Preparation and etching of porous silicon as a sacrificial layer used in RF-MEMSs devices. In: Proceedings of the international conference on solid-state and integrated-circuit technology, Shanghai

  13. Hedrich F, Billat S, Lang S (2000) Structuring of membrane sensors using sacrificial porous silicon. Sensors Actuators 84:315–323

    Article  CAS  Google Scholar 

  14. Amri C, Ouertani R, Hamdia A, Ezzaouia H (2018) Enhancement of electrical parameters in solar grade monocrystalline silicon by external gettering through sacrificial silicon nanowire layer. Mater Res Bull 98:41–46

    Article  CAS  Google Scholar 

  15. Convertino A, Cuscuna M, Martelli F (2012) Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers. Nanotechnology 23:305602

    Article  Google Scholar 

  16. Lee KN, Lee K, Jung S, Lee M, Seong W (2012) Fabrication of metal nanobridge arrays using sacrificial silicon nanowire. J Electr Eng Technol 7:396–400

    Article  Google Scholar 

  17. Li X, Bohn P (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572

    Article  CAS  Google Scholar 

  18. Liu K, Qu S, Zhang X, Wang Z (2013) Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching. J Mater Sci 48:1755–1762. https://doi.org/10.1007/s10853-012-6936-7

    Article  CAS  Google Scholar 

  19. Kim S, Khang D (2014) Bulk micromachining of Si by metal-assisted chemical etching. Small 10:3761–3766

    Article  CAS  Google Scholar 

  20. Hildreth O, Lin W, Wong C (2009) Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. ACS Nano 3:4033–4042

    Article  CAS  Google Scholar 

  21. Bell T, Gennissen P, DeMunter D, Kuhl M (1996) Porous silicon as a sacrificial material. J Micromech Microeng 6:361–369

    Article  CAS  Google Scholar 

  22. Weisse J, Lee C, Kim D, Cai L, Rao P, Zheng X (2013) Electro-assisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett 13:4362–4368

    Article  CAS  Google Scholar 

  23. Fang H, Wu Y, Zhu J (2006) Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17:3768–3774

    Article  CAS  Google Scholar 

  24. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  CAS  Google Scholar 

  25. Huang Z, Shimizu T, Senz S, Zhang Z, Zhang X, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525

    Article  CAS  Google Scholar 

  26. Chang S-W, Chuang V, Boles S, Ross C, Thompson C (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Funct Mater 19:2495–2500

    Article  CAS  Google Scholar 

  27. Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394

    Article  CAS  Google Scholar 

  28. Harada Y, Li X, Bohn P, Nuzzo R (2016) Catalytic amplification of the soft lithographic patterning of si nonelectrochemical orthogonal fabrication of photoluminescent porous si pixel arrays. J Am Chem Soc 123:8709–8717

    Article  Google Scholar 

  29. Hildreth O, Brown D, Wong C (2011) 3D Out-of-plane rotational etching with pinned catalysts in metal-assisted chemical etching of silicon. Adv Funct Mater 21:3119–3128

    Article  CAS  Google Scholar 

  30. Yae S, Morii Y, Fukumuro N, Matsuda H (2012) Catalytic activity of noble metals for metal-assisted chemical etching of silicon. Nanoscale Res Lett 7:352–356

    Article  Google Scholar 

  31. Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516

    Article  CAS  Google Scholar 

  32. Yun M (2000) Investigation of KOH anisotropic etching for the fabrication of sharp tips in silicon-on-insulator (SOI) material. J Korean Phys Soc 37:605–610

    Article  CAS  Google Scholar 

  33. Quiroga-González E, Ossei-Wusu E, Carstensen J, Föll H (2011) How to make optimized arrays of si wires suitable as superior anode for li-ion batteries. J Electrochem Soc 158:E119–E123

    Article  Google Scholar 

  34. Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S (2006) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12:7942–7947

    Article  CAS  Google Scholar 

  35. Abouda-Lachiheb M, Nafie N, Bouaicha M (2012) The dual role of silver during silicon etching in HF solution. Nanoscale Res Lett 7:455–459

    Article  Google Scholar 

  36. Bastide S, Quang N, Monna R, Lévy-Clément C (2009) Chemical etching of Si by Ag nanocatalysts in HF–H2O2: application to multicrystalline Si solar cell texturisation. Phys Status Solidi C 6:1536–1540

    Article  CAS  Google Scholar 

  37. Li S, Ma W, Zhou Y, Chen X, Xiao Y, Ma M, Zhu W, Wie F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9:196–203

    Article  Google Scholar 

  38. Peng K, Lu A, Zhang R, Lee S (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035

    Article  CAS  Google Scholar 

  39. Tsujino K, Matsumura M (2007) Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim Acta 53:28–34

    Article  CAS  Google Scholar 

  40. Choi H, Baek S, Jang HS, Kim S, Oh B, Kim J (2011) Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays. Curr Appl Phys 11:S25–S29

    Article  Google Scholar 

  41. Geyer N, Fuhrmann B, Leipner HS, Werner P (2013) Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl Mater Interfaces 5:4302–4308

    Article  CAS  Google Scholar 

  42. Um H, Kim N, Lee K, Hwang I, Seo J, Yu Y, Duane P, Wober M, Seo K (2015) Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications. Sci Rep 5:11277

    Article  Google Scholar 

  43. Choi K, Song Y, Ki B, Oh J (2017) Nonlinear etch rate of au-assisted chemical etching of silicon. ACS Omega 2:2100–2105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Projects CONACyT INFR-2011-1-163153, CONACyT CB-2014-01-243407 and PROMEP BUAP-NPTC-377. The author O. Pérez-Díaz acknowledges the financial support of CONACyT through the scholarship with No. 378447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Quiroga-González.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Díaz, O., Quiroga-González, E. & Silva-González, N.R. Silicon microstructures through the production of silicon nanowires by metal-assisted chemical etching, used as sacrificial material. J Mater Sci 54, 2351–2357 (2019). https://doi.org/10.1007/s10853-018-3003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3003-z

Keywords

Navigation