Skip to main content

Advertisement

Log in

Stable graphene oxide-based composite membranes intercalated with montmorillonite nanoplatelets for water purification

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) membranes have great potential in separation technology. However, their instability under aqueous environments hinders their separation performance and practical application. Herein, we present a facile and environmentally friendly method to fabricate stable GO-based membranes via the intercalation of montmorillonite (MMT) nanoplatelets. The as-prepared membranes remain stable under water (neutral, acidic, and alkaline) in a fully hydrated state and exhibit a high pure-water flux up to 139.5 L·m−2·h−1 under 0.09 MPa. Furthermore, they also show high organic molecule rejection (98.75% for Congo red, 99.44% for rhodamine B, 99.90% for crystal violet, 99.94% for methylene blue, 96.26% for phenanthracene, and 51.32% for phenol) as well as good removal rate of heavy metal ions (100% for Ag(I), 100% for Cu(II), and 27.04% for Cr(VI)). Moreover, an outstanding recycling ability of the membranes also has been obtained. These significant performances make our membranes a good candidate in water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Elliott JE, Elliott KH (2013) Tracking marine pollution. Science 340(6132):556–558

    Article  CAS  Google Scholar 

  2. Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  3. Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70

    Article  CAS  Google Scholar 

  4. Jiang Y, Wang WN, Liu D, Nie Y, Li W, Wu J, Zhang F, Biswas P, Fortner JD (2015) Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol 49(11):6846–6854

    Article  CAS  Google Scholar 

  5. Sun P, Liu H, Wang K, Zhong M, Wu D, Zhu H (2015) Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling. Chem Commun 51(15):3251–3254

    Article  CAS  Google Scholar 

  6. Xu C, Cui A, Xu Y, Fu X (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 62(10):465–471

    Article  CAS  Google Scholar 

  7. Xia S, Ni M (2015) Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J Membr Sci 473:54–62

    Article  CAS  Google Scholar 

  8. Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X (2013) Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 4(4):2979–2987

    Article  Google Scholar 

  9. Wan Q, Liu M, Xie Y, Tian J, Huang Q, Deng F, Mao L, Zhang Q, Zhang X, Wei Y (2017) Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J Mater Sci 52(1):504–518. https://doi.org/10.1007/s10853-016-0349-y

    Article  CAS  Google Scholar 

  10. Giménez-Pérez A, Bikkarolla SK, Benson J, Bengoa C, Stüber F, Fortuny A, Fabregat A, Font J, Papakonstantinou P (2016) Synthesis of N-doped and non-doped partially oxidised graphene membranes supported over ceramic materials. J Mater Sci 51(18):8346–8360. https://doi.org/10.1007/s10853-016-0075-5

    Article  CAS  Google Scholar 

  11. Mi B (2014) Materials science. Graphene oxide membranes for ionic and molecular sieving. Science 343(6172):740–742

    Article  CAS  Google Scholar 

  12. Cruzsilva R, Endo M, Terrones M (2016) Graphene oxide films, fibers, and membranes. Nanotechnol Rev 5(4):377–391

    CAS  Google Scholar 

  13. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754

    Article  CAS  Google Scholar 

  14. Yeh CN, Raidongia K, Shao J, Yang QH, Huang J (2014) On the origin of the stability of graphene oxide membranes in water. Nat Chem 7(2):166–170

    Article  Google Scholar 

  15. Huang L, Li Y, Zhou Q, Yuan W, Shi G (2015) Graphene oxide membranes with tunable semipermeability in organic solvents. Adv Mater 27(25):3797–3802

    Article  CAS  Google Scholar 

  16. Liu H, Wang H, Zhang X (2015) Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv Mater 27(2):249–254

    Article  Google Scholar 

  17. Sealy C (2015) Graphene oxide solubility mystery solved. Nano Today 10(1):1–2

    Article  Google Scholar 

  18. Huang L, Zhang M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6(14):2806–2815

    Article  CAS  Google Scholar 

  19. Xi YH, Hu JQ, Zhuang L, Rui X, Ju XJ, Wei W, Chu LY (2016) Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing. ACS Appl Mater Interfaces 8(24):15557–15566

    Article  CAS  Google Scholar 

  20. Cheng Q, Jiang L, Tang Z (2014) Bioinspired layered materials with superior mechanical performance. Acc Chem Res 47(4):1256–1266

    Article  CAS  Google Scholar 

  21. Park S, Lee KS, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578

    Article  CAS  Google Scholar 

  22. An Z, Compton OC, Putz KW, Brinson LC, Nguyen SBT (2011) Bio-Inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv Mater 23(33):3842–3846

    CAS  Google Scholar 

  23. Mahmoud KA, Mansoor B, Mansour A, Khraisheh M (2015) Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356:208–225

    Article  CAS  Google Scholar 

  24. Li F, Yu Z, Shi H, Yang Q, Chen Q, Pan Y, Zeng G, Yan L (2017) A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem Eng J 322:33–45

    Article  CAS  Google Scholar 

  25. Zhang C, Weng WT, Fan W, Yang Z, Huang S, Liu T (2011) Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. J Mater Chem 21(44):18011–18017

    Article  CAS  Google Scholar 

  26. Gao G, Du G, Sun Y, Fu J (2015) Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces 7(8):5029–5037

    Article  CAS  Google Scholar 

  27. Zhu J, Cozzolino V, Pigna M, Huang Q, Caporale AG, Violante A (2011) Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements. Chemosphere 84(4):484–489

    Article  CAS  Google Scholar 

  28. Fang B, Peng L, Xu Z, Gao C (2015) Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 9(5):5214–5222

    Article  CAS  Google Scholar 

  29. Ming P, Song Z, Gong S, Zhang Y, Duan J, Zhang Q, Jiang L, Cheng Q (2015) Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J Mater Chem A 3(42):21194–21200

    Article  CAS  Google Scholar 

  30. Cheng W, Ding C, Nie X, Duan T, Ding R (2017) Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification. Acs Sustain Chem Eng 5(6):5503–5511

    Article  CAS  Google Scholar 

  31. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72

    Article  CAS  Google Scholar 

  32. Hung WS, Tsou CH, Guzman MD, An QF, Liu YL, Zhang YM, Hu CC, Lee KR, Lai JY (2014) Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem Mater 26(9):2983–2990

    Article  CAS  Google Scholar 

  33. Peng K, Fu L, Ouyang J, Yang H (2016) Emerging parallel dual 2D composites: natural clay mineral hybridizing MoS2 and interfacial structure. Adv Funct Mater 26(16):2666–2675

    Article  CAS  Google Scholar 

  34. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J Phys Chem Lett 3(7):867–872

    Article  CAS  Google Scholar 

  35. Yang Y, Wang J, Zhang J, Liu J, Yang X, Zhao H (2009) Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir Acs J Surf Coll 25(19):11808–11814

    Article  CAS  Google Scholar 

  36. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  37. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  CAS  Google Scholar 

  38. Park S, Dikin DA, Nguyen SBT, Ruoff RS (2016) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113(36):15801–15804

    Article  Google Scholar 

  39. Kang KM, Kim DW, Ren CE, Cho KM, Kim SJ, Choi J, Nam YT, Yury G, Jung HT (2017) Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl Mater Interfaces 9(51):44687–44694

    Article  CAS  Google Scholar 

  40. Liu L, Zhang Y, He Y, Xie Y, Huang L, Tan S, Cai X (2014) Preparation of montmorillonite-pillared graphene oxide with increased single- and co-adsorption towards lead ions and methylene blue. Rsc Adv 5(6):3965–3973

    Article  Google Scholar 

  41. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  42. Cheng C, Jiang G, Garvey CJ, Wang Y, Simon GP, Liu JZ, Li D (2016) Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci Adv 2(2):e1501272. https://doi.org/10.1126/sciadv.1501272

    Article  Google Scholar 

  43. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23(29):3693–3700

    Article  CAS  Google Scholar 

  44. Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J Mater Chem A 1(26):7612–7621

    Article  CAS  Google Scholar 

  45. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1(25):7433–7443

    Article  CAS  Google Scholar 

  46. Zhang P, Gong JL, Zeng GM, Deng CH, Yang HC, Liu HY, Huan SY (2017) Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem Eng J 322:657–666

    Article  CAS  Google Scholar 

  47. Bano S, Mahmood A, Kim SJ, Lee KH (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3(5):2065–2071

    Article  CAS  Google Scholar 

  48. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47(8):3715–3723

    Article  CAS  Google Scholar 

  49. Goh K, Jiang W, Karahan HE, Zhai S, Wei L, Yu D, Fane AG, Wang R, Chen Y (2016) All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv Funct Mater 25(47):7348–7359

    Article  Google Scholar 

  50. Guan K, Zhao D, Zhang M, Shen J, Zhou G, Liu G, Jin W (2017) 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J Membr Sci 542:41–51

    Article  CAS  Google Scholar 

  51. Qu Y, Zhang QG, Soyekwo F, Gao RS, Lv RX, Lin CX, Chen MM, Zhu AM, Liu QL (2016) Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation. Nanoscale 8(43):18428–18435

    Article  CAS  Google Scholar 

  52. Abozar A, Phillip S, Martin ST, Shinde DB, Mahdokht S, Chakraborty BP, Rachel T, Dibakar B, Mainak M (2016) Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun 7:10891. https://doi.org/10.1038/ncomms10891

    Article  CAS  Google Scholar 

  53. Jyothi MS, Soontarapa K, Padaki M, Balakrishna RG, Isloor AM (2017) Favorable influence of mPIAM on PSf blend membranes for ion rejection. J Membr Sci 533:229–240

    Article  CAS  Google Scholar 

  54. Petrella A, Petrella M, Boghetich G, Basile T, Petruzzelli V, Petruzzelli D (2011) Heavy metals retention on recycled waste glass from solid wastes sorting operations: a comparative study among different metal species. Ind Eng Chem Res 51(1):119–125

    Article  Google Scholar 

  55. Song X, Zambare RS, Qi S, Sowrirajalu BN, Selvaraj APJ, Tang CY, Gao C (2017) Charge gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes. ACS Appl Mater Interfaces 9(47):41482–41495

    Article  CAS  Google Scholar 

  56. Chen L, Moon JH, Ma X, Zhang L, Chen Q, Chen L, Peng R, Si P, Feng J, Li Y (2018) High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon 130:487–494

    Article  CAS  Google Scholar 

  57. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work is acknowledged to the National Natural Science Foundation of China (Grant No. 51774245) and Sichuan Province Sci-Tech Supported Project (No. 2015RZ0023).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Yi He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., He, Y., Shi, H. et al. Stable graphene oxide-based composite membranes intercalated with montmorillonite nanoplatelets for water purification. J Mater Sci 54, 2241–2255 (2019). https://doi.org/10.1007/s10853-018-2997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2997-6

Keywords