Skip to main content

Advertisement

Log in

Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing advanced MoS2 anode material for sodium ion battery is still a big challenge since it is hindered by poor cycling stability and rate capability owing to huge volume variation during charge/discharge processes and low conductivity. In this work, three-dimensional porous networks consisting of several-layered MoS2/C nanosheets are synthesized via a facile freeze-drying approach using NaCl as template. MoS2/C nanosheet networks demonstrate a high reversible capacity of 389 mAh g−1 and maintain 370 mAh g−1 after 100 cycles at 100 mA g−1, indicating excellent cycling stability. Good rate properties are also achieved with reversible capacities of 292, 256, 223, 174 mAh g−1 at 1, 2, 4, 6 A g−1, respectively. The excellent electrochemical performance can be ascribed to the unique three-dimensional networks consisting of few-layered MoS2 nanosheets, which facilitates sodium ion diffusion via near-surface reaction. Moreover, the robust three-dimensional carbon matrix can not only provide a conductive network, but also buffer the strain and maintain the electrode integrity during repeated sodiation/desodiation process. This strategy presents a new path for fabricating low-cost and high-yield three-dimensional metal sulfide (phosphide)/carbon composites for applications in energy-related fields and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  2. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    Article  CAS  Google Scholar 

  3. Dipan K, Elahe T, Victor D, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448

    Article  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  5. Pang Y, Zhang S, Liu L, Liang J, Sun Z, Wang Y, Xiao C, Ding D, Ding S (2017) Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J Mater Chem A 5:17963–17972

    Article  CAS  Google Scholar 

  6. Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642

    Article  Google Scholar 

  7. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte Interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867

    Article  CAS  Google Scholar 

  8. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2016) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  Google Scholar 

  9. Yang W, Kai H, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    Article  Google Scholar 

  10. Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693

    Article  CAS  Google Scholar 

  11. Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68

    Article  CAS  Google Scholar 

  12. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072

    Article  CAS  Google Scholar 

  13. Zhang Q, He H, Huang X, Yan J, Tang Y, Wang H (2018) TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries. Chem Eng J 332:57–65

    Article  CAS  Google Scholar 

  14. He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188

    Article  CAS  Google Scholar 

  15. Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY (2018) Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14:1800898

    Article  Google Scholar 

  16. Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788

    Article  CAS  Google Scholar 

  17. Eames C, Islam MS (2014) Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 136:16270–16276

    Article  CAS  Google Scholar 

  18. Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383

    Article  Google Scholar 

  19. Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27:1702116

    Article  Google Scholar 

  20. Kumar NA, Dar MA, Gul R, Baek JB (2015) Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater Today 18:286–298

    Article  CAS  Google Scholar 

  21. Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26:911–918

    Article  CAS  Google Scholar 

  22. Li Y, Liang Y, Hernandez FCR, Yoo HD, An Q, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461

    Article  Google Scholar 

  23. Li X, Feng Z, Zai J, Ma Z-F, Qian X (2018) Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J Power Sources 373:103–109

    Article  CAS  Google Scholar 

  24. Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205

    Article  Google Scholar 

  25. Che Z, Li Y, Chen K, Wei M (2016) Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sources 331:50–57

    Article  CAS  Google Scholar 

  26. Yang W, He L, Tian X, Yan M, Yuan H, Liao X, Meng J, Hao Z, Mai L (2017) Microdevices: carbon-MEMS-based alternating stacked MoS2@rGOCNT micro-supercapacitor with high capacitance and energy density. Small 13:1700639

    Article  Google Scholar 

  27. Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630

    Article  CAS  Google Scholar 

  28. Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed Engl 53:2152–2156

    Article  CAS  Google Scholar 

  29. Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470

    Article  CAS  Google Scholar 

  30. Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738

    Article  CAS  Google Scholar 

  31. Qin J, Wang T, Liu D, Liu E, Zhao N, Shi C, He F, Ma L, He C (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater 30:1704670

    Article  Google Scholar 

  32. Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798

    Article  CAS  Google Scholar 

  33. Zhao C, Yu C, Qiu B, Zhou S, Zhang M, Huang H, Wang B, Zhao J, Sun X, Qiu J (2018) Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv Mater 30:1702486

    Article  Google Scholar 

  34. Teng Y, Zhao H, Zhang Z, Zhao L, Zhang Y, Li Z, Xia Q, Du Z, Świerczek K (2017) MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119:91–100

    Article  CAS  Google Scholar 

  35. Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481

    Article  CAS  Google Scholar 

  36. Zhang P, Qin F, Zou L, Wang M, Zhang K, Lai Y, Li J (2017) Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 9:12189–12195

    Article  CAS  Google Scholar 

  37. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  38. Lacey SD, Wan J, Cresce AVW, Russell SM, Dai J, Bao W, Xu K, Hu L (2015) Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett 15:1018–1024

    Article  CAS  Google Scholar 

  39. Xia Q, Tan Q (2018) MoS2 nanosheets strongly coupled with cotton-derived carbon microtubes for ultrafast sodium ion insertion. Mater Lett 228:285–288

    Article  CAS  Google Scholar 

  40. Zhang S, Yu X, Yu H, Chen Y, Gao P, Li C, Zhu C (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885

    Article  CAS  Google Scholar 

  41. Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25(9):1393–1403

    Article  CAS  Google Scholar 

  42. Wei Q, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61

    Article  Google Scholar 

  43. Zhou F, Xin S, Liang HW, Song LT, Yu SH (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 53:11552–11556

    Article  CAS  Google Scholar 

  44. Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    Article  CAS  Google Scholar 

  45. Wang YX, Chou SL, Wexler D, Liu HK, Dou SX (2014) High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites. Chemistry 20:9607

    Article  CAS  Google Scholar 

  46. Kong D, Cheng C, Wang Y, Huang ZX, Lim YV, Liu B, Ge Q, Yang HY (2017) Fe3O4 quantum dots decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion batteries anode. J Mater Chem A 5:9122–9131

    Article  CAS  Google Scholar 

  47. Xu M, Yi F, Niu Y, Xie J, Hou J, Liu S, Hu W, Li Y, Li CM (2015) Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries. J Mater Chem A 3:9932–9937

    Article  CAS  Google Scholar 

  48. Xu G, Liu P, Ren Y, Huang X, Peng Z, Tang Y, Wang H (2017) Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. J Power Sources 361:1–8

    Article  CAS  Google Scholar 

  49. He H, Sun D, Zhang Q, Fu F, Tang Y, Guo J, Shao M, Wang H (2017) Iron doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl Mater Interfaces 9:6093–6103

    Article  CAS  Google Scholar 

  50. Sun D, Tang Y, Ye D, Yan J, Zhou H, Wang H (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262

    Article  CAS  Google Scholar 

  51. He H, Gan Q, Wang H, Xu G-L, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M (2018) Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44:217–227

    Article  CAS  Google Scholar 

  52. He H, Huang D, Pang W, Sun D, Wang Q, Tang Y, Ji X, Guo Z, Wang H (2018) Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv Mater 30:1801013

    Article  Google Scholar 

  53. Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 21571189 and 21771062), Science and Technology Major Project of Hunan Province, China (2017GK1040), Science and Technology Plan Project of Hunan Province, China (Nos. 2016TP1007 and 2017TP1001), Hunan Provincial Natural Science Foundation of China (No. 2018JJ4002) and Innovation-Driven Project of Central South University (No. 2016CXS009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Li, H., Sun, D. et al. Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. J Mater Sci 54, 2472–2482 (2019). https://doi.org/10.1007/s10853-018-2991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2991-z

Keywords

Navigation