Skip to main content

Advertisement

Log in

Synthesis and thermal properties of a capric acid-modified expanded vermiculite phase change material

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new capric acid (CA)-modified vermiculite composite phase change material (PCM) with improved adsorption ability and enhanced thermal stability was prepared in the present research. The silanization vermiculite (SV) obtained by two-step acidification and silanization treatment was used as the CA-supporting matrix. The differential scanning calorimeter detected the fusion enthalpy of CA–SV composite as 118.41 J/g, which was 37.1% higher than that of CA-expanded vermiculite (EV). The phase conversion rate (α)–temperature (T) curves and the dα/dT-α curves revealed that the phase transition hysteresis phenomenon of the CA–SV composite was more conspicuous than that of CA–EV. It was also found that the fusion enthalpy loss of CA–SV was 3.1% after 1000 thermal cycles. Therefore, it can be concluded that the CA–SV composite PCM with enhanced containment ability and improved thermal stability is a promising candidate for thermal energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  CAS  Google Scholar 

  2. Memon SA (2014) Phase change materials integrated in building walls: a state of the art review. Renew Sust Energy Rev 31:870–906

    Article  Google Scholar 

  3. Song S, Dong L, Chen S et al (2014) Stearic–capric acid eutectic/activated-attapulgiate composite as form-stable phase change material for thermal energy storage. Energy Convers Manag 81:306–311

    Article  CAS  Google Scholar 

  4. Yuan Y, Zhang N, Tao W et al (2014) Fatty acids as phase change materials: a review. Renew Sust Energy Rev 29:482–498

    Article  CAS  Google Scholar 

  5. Zhang Z, Zhang N, Peng J et al (2014) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91:426–431

    Article  Google Scholar 

  6. Feldman D, Shapiro MM, Banu D et al (1989) Fatty acids and their mixtures as phase-change materials for thermal energy storage. Sol Energy Mater 18:201–216

    Article  CAS  Google Scholar 

  7. Pasupathy A, Velraj R, Seeniraj RV (2008) Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sust Energy Rev 12:39–64

    Article  Google Scholar 

  8. Rozanna D, Chuah TG, Salmiah A et al (2005) Fatty Acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy 1:495–513

    Article  Google Scholar 

  9. Pielichowski K, Flejtuch K (2003) Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol Mater Eng 288:259–264

    Article  CAS  Google Scholar 

  10. Zhang J, Zhang X, Wan Y et al (2012) Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material. Sol Energy 86:1142–1148

    Article  CAS  Google Scholar 

  11. Nomura T, Zhu C, Sheng N et al (2015) Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2. Sol Energy Mater Sol Cells 143:424–429

    Article  CAS  Google Scholar 

  12. Zhao Y, Min X, Huang Z (2018) Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build 158:1049–1062

    Article  Google Scholar 

  13. Zhang X, Liu H, Huang Z (2016) Preparation and characterization of the properties of polyethylene glycol Si3N4 nanowires as phase-change materials. Chem Eng J 301:229–237

    Article  CAS  Google Scholar 

  14. Min X, Fang M, Huang Z (2015) Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep 5:12964

    Article  CAS  Google Scholar 

  15. Li TingXian, Lee Ju-Hyuk, Wang RuZhu (2013) Yong Tae Kang, enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy 55:752–761

    Article  CAS  Google Scholar 

  16. Karaipekli A, Sarı A (2008) Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy 33:2599–2605

    Article  CAS  Google Scholar 

  17. Li M, Wu Z, Kao H (2011) Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials. Appl Energy 88:3125–3132

    Article  CAS  Google Scholar 

  18. Mei D, Zhang B, Liu R et al (2011) Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 95:2772–2777

    Article  CAS  Google Scholar 

  19. Xu B, Ma H, Lu Z et al (2015) Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl Energy 160:358–367

    Article  CAS  Google Scholar 

  20. Zhang W, Zhang X, Huang Z (2018) Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials. J Mater Sci Technol 34:379–386

    Article  Google Scholar 

  21. Wen R, Huang Z, Huang Y (2016) Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy Build 116:677–683

    Article  Google Scholar 

  22. Sarı A, Karaipekli A (2008) Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys 109:459–464

    Article  Google Scholar 

  23. Wei H, Xie X, Li X et al (2016) Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl Energy 178:616–623

    Article  CAS  Google Scholar 

  24. Liu F, Zhu J, Liu J et al (2018) Preparation and properties of capric-stearic acid/white carbon black composite for thermal storage in building envelope. Energy Build 158:1781–1789

    Article  Google Scholar 

  25. Li X, Wei H, Lin X et al (2016) Preparation of stearic acid/modified expanded vermiculite composite phase change material with simultaneously enhanced thermal conductivity and latent heat. Sol Energy Mater Sol Cells 155:9–13

    Article  CAS  Google Scholar 

  26. Wang W, Yang X, Fang Y et al (2009) Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Appl Energy 86:1196–1200

    Article  CAS  Google Scholar 

  27. Karaman S, Karaipekli A, Sarı A et al (2011) Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 95:1647–1653

    Article  CAS  Google Scholar 

  28. Yu XB, Wei CH, Ke L et al (2012) Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water. J Colloid Interface Sci 369:344–351

    Article  CAS  Google Scholar 

  29. Chmielarz L, Wojciechowska M, Rutkowska M et al (2012) Acid-activated vermiculites as catalysts of the DeNOx, process. Catal Today 191:25–31

    Article  CAS  Google Scholar 

  30. Madejová J, Pentrák M, Pálková H et al (2009) Near-infrared spectroscopy: a powerful tool in studies of acid-treated clay minerals. Vib Spectrosc 49:211–218

    Article  Google Scholar 

  31. Steudel A, Batenburg LF, Fischer HR et al (2009) Alteration of non-swelling clay minerals and magadiite by acid activation. Appl Clay Sci 44:95–104

    Article  CAS  Google Scholar 

  32. Madejová J, Bujdák J, Janek M et al (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim Acta A 54:1397–1406

    Article  Google Scholar 

  33. Santos SSG, Silva HRM, Souza AGD et al (2015) Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl Clay Sci 104:286–294

    Article  CAS  Google Scholar 

  34. Fang G, Li H, Chen Z et al (2010) Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy 35:4622–4626

    Article  CAS  Google Scholar 

  35. Ferreira Marystela, Wohnrath Karen, Riul Antonio et al (2002) Interactions at the molecular level between biphosphine ruthenium complexes and stearic acid in langmuir and langmuir blodgett films. J Phys Chem B 106:7272–7277

    Article  CAS  Google Scholar 

  36. Li C, Fu L, Jing O et al (2013) Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep 3:1908

    Article  Google Scholar 

  37. Karaipekli A, Sarı A (2009) Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy 83:323–332

    Article  CAS  Google Scholar 

  38. Gray S, Uher C (1977) Thermal conductivity of mica at low temperatures. J Mater Sci 12:959–965. https://doi.org/10.1007/BF00540978

    Article  CAS  Google Scholar 

  39. Li M, Wu Z, Kao H (2011) Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials. Appl Energy 88:3125–3132

    Article  CAS  Google Scholar 

  40. Karaipekli A, Sari A (2010) Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem 16:767–773

    Article  CAS  Google Scholar 

  41. Sarı A, Karaipekli A, Alkan C (2009) Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J 155:899–904

    Article  Google Scholar 

  42. Wei T, Zheng B, Liu J, Gao Y, Guo W (2014) Structures and thermal properties of fatty acid/expanded perlite composites as form-stable phase change materials. Energy Build 68:587–592

    Article  Google Scholar 

  43. Liu J, Yu Y, He X (2015) Research on the preparation and properties of lauric acid/expanded perlite phase change materials. Energy Build 110:108–111

    Google Scholar 

  44. Wang Y, Xia TD, Zheng H (2011) Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energy Build 43:2365–2370

    Article  Google Scholar 

  45. Sarı A (2014) Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage. Energy Build 69(3):184–192

    Article  Google Scholar 

  46. Min L, Wu Z, Kao H (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag 52:3275–3281

    Article  Google Scholar 

  47. Dong Z, Ke-Ru WU (2004) Tuning Effect of Porous Structure on Phase Changing Behavior of Organic Phase Changing Matters. J Tongji Univ 32:1163–1167

    Google Scholar 

  48. Li H, Fang GY (2010) Experimental investigation on the characteristics of polyethylene glycol/cement composites as thermal energy storage materials. Chem Eng Technol 33:1650–1654

    Article  CAS  Google Scholar 

  49. Lopes AC, Ferreira JCC, Costa CM et al (2013) Crystallization kinetics of montmorillonite/poly (vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochim Acta 574:19–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaoqun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhu, J., Zhou, W. et al. Synthesis and thermal properties of a capric acid-modified expanded vermiculite phase change material. J Mater Sci 54, 2231–2240 (2019). https://doi.org/10.1007/s10853-018-2988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2988-7

Keywords

Navigation