Skip to main content
Log in

Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid material, aniline-functionalized bismuth oxide nanoparticles, has been synthesized using a two-step wet-chemical synthesis method and characterized by different optical, microscopy and surface analysis techniques. The material was applied as an active device component to demonstrate the electrical property of the device. The device exhibited a nonvolatile, resistive switching performance with a constant ON–OFF current ratio. The nonvolatile behaviour was confirmed by applying a 6 V of read pulse for 0.1 s after every 60 s with the duty-cycle of 0.16% for 2 × 103 s. To check the endurance of ‘ON’ and ‘OFF’ states of the system, a bias of 6 V (read pulse) was applied to the device for 0.2 s with a duty-cycle of 50% for 103 cycles and the device showed the potential for storing and processing the data in a binary approach and differentiate between the ON and OFF states with the ratio of ~ 102. The current–voltage characteristics of the device in both the ON and OFF states are fitted with the Poole–Frenkel emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo F, Karl A, Xue Q-F (2017) The fabrication of color-tunable organic light-emitting diode displays via solution processing. Light Sci Appl 6(11):e17094

    Article  CAS  Google Scholar 

  2. Nunzi J-M (2002) Organic photovoltaic materials and devices. C R Phys 3(4):523–542

    Article  CAS  Google Scholar 

  3. Torricelli F, Colalongo L, Raiteri D (2016) Ultra-high gain diffusion-driven organic transistor. Nat Commun 7(1):1–9

    Google Scholar 

  4. Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19(11):1452–1463

    Article  CAS  Google Scholar 

  5. Ling QD, Liaw DJ, Zhu C (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33(11):917–978

    Article  CAS  Google Scholar 

  6. Zhang Y, Wang H, Zhang L (2017) Field-effect transistor memories based on ferroelectric polymers. J Semicond 38(11):111001–111012

    Article  Google Scholar 

  7. Prime D, Paul S (2009) Overview of organic memory devices. Philos Trans R Soc A Math Phys Eng Sci 367(1905):4141–4157

    Article  CAS  Google Scholar 

  8. Chen W, Abd-el-aziz AS, Edward P, Craig S (2015) Electrical memory materials and devices. RSC, London. ISBN 978-1-78262-116-4

    Book  Google Scholar 

  9. Ouyang J, Chu C-W, Szmanda CR (2004) Programmable polymer thin film and non-volatile memory device. Nat Mater 3(12):918–922

    Article  CAS  Google Scholar 

  10. Ma L, Pyo S, Ouyang J (2003) Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl Phys Lett 82(9):1419–1421

    Article  CAS  Google Scholar 

  11. Tseng RJ, Huang J, Ouyang J, Kaner RB (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano 5(5):1077–1080

    CAS  Google Scholar 

  12. Prakash A, Ouyang J, Lin J-L, Yang Y (2006) Polymer memory device based on conjugated polymer and gold nanoparticles. J Appl Phys 100(5):054309

    Article  Google Scholar 

  13. Hwang B, Gu C, Lee D, Lee JS (2017) Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Sci Rep 7(3):43794

    Article  Google Scholar 

  14. Aleshin AN, Alexandrova EL (2008) Switching and memory effects governed by the hopping mechanism of charge carrier transfer in composite films based on conducting polymers and inorganic nanoparticles. Phys Solid State 50(10):1978–1984

    Article  CAS  Google Scholar 

  15. Verbakel F, Meskers SCJ, Raj J (2006) Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Appl Phys Lett 89(10):102103

    Article  Google Scholar 

  16. Nagashima K, Yanagida T, Oka K (2010) Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett 10(4):1359–1363

    Article  CAS  Google Scholar 

  17. Kang SW, Rhee SW (2003) Effect of bismuth oxide as a buffer layer on metal–lanthanum-substituted bismuth titanate–insulator–semiconductor structures. J Vac Sci Technol B 21(6):2506–2511

    Article  CAS  Google Scholar 

  18. Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen. Electrochim Acta 21(8):539–543

    Article  CAS  Google Scholar 

  19. Adamian ZN, Abovian HV, Aroutiounian VM (1996) Smoke sensor on the base of Bi2O3 sesquioxide. Sens Actuators B Chem 35(8):241–243

    Article  CAS  Google Scholar 

  20. Hanna TA (2004) The role of bismuth in the SOHIO process. Coord Chem Rev 248(8):429–440

    Article  CAS  Google Scholar 

  21. Yang CH, Seidel J, Kim SY (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8(6):485–493

    Article  CAS  Google Scholar 

  22. Yin K, Li M, Liu Y (2010) Resistance switching in polycrystalline BiFeO3 thin films. Appl Phys Lett 97(17):042101

    Article  Google Scholar 

  23. Li M, Zhuge F, Zhu X (2010) Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21(42):6–11

    Article  Google Scholar 

  24. Zhu Y, Li M, Hu Z (2013) Nonvolatile resistive switching behaviour and the mechanism in Nd:BiFeO3/Nb:SrTiO3 heterostructure. J Phys D Appl Phys 46(21):215305

    Article  Google Scholar 

  25. Hou J, Yang C, Wang Z (2013) In situ synthesis of α-β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl Catal B Environ 142–143(5):504–511

    Article  Google Scholar 

  26. Ho CH, Chan CH, Huang YS (2013) The study of optical band edge property of bismuth oxide nanowires α-Bi2O3. Opt Express 21(10):11965–11972

    Article  CAS  Google Scholar 

  27. Kumar P, Singh J, Pandey AC (2013) Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv 3(7):2313–2317

    Article  CAS  Google Scholar 

  28. Lim E, Ismail R (2015) Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3):586–613

    Article  CAS  Google Scholar 

  29. Son D, Oh D, Jung J, Kim T (2011) Charging and discharging mechanisms of organic bistable devices based on ZnO nanoparticles capped with a poly n-vinylcarbazole polymer. J Nanosci Nanotechnol 11(1):711–715

    Article  CAS  Google Scholar 

  30. Son DI, Park DH, Choi WK, Cho SH, Kim WT, Kim TW (2009) Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Nanotechnology 20(19):195203

    Article  Google Scholar 

  31. Song J, Han H, Peng B (2017) Role of nanoparticle surface defects in the conduction mechanism of polymer-nanoparticle electrical bistable devices. RSC Adv 7(85):54128–54135

    Article  CAS  Google Scholar 

  32. Li Y, Sui W, Li J-C (2017) Interfacial effects on resistive switching of flexible polymer thin films embedded with TiO2 nanoparticles. J Phys Chem C 121(14):7944–7950

    Article  Google Scholar 

  33. Tsai C, Chen C, Wang H, Lin J, Liou G (2013) Novel solution processable fluorene-based polyimide/TiO2 hybrids with tunable memory properties. Polym Chem 4(17):4570–4573

    Article  CAS  Google Scholar 

  34. Yim CM, Watkins MB, Wolf MJ, Hermansson K, Thornton G (2016) Engineering polarons at a metal oxide surface. Phys Rev Lett 117(11):116402

    Article  CAS  Google Scholar 

  35. Wang M, Bi C, Li L, Long S, Liu Q, Lv H, Lu N, Sun P, Liu M (2014) Thermoelectric Seebeck effect in oxide-based resistive switching memory. Nat Commun 5(8):4598–4604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Faculty of Science and the Global Excellence and Stature programme, University of Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Mallick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perla, V.K., Ghosh, S.K. & Mallick, K. Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions. J Mater Sci 54, 2324–2332 (2019). https://doi.org/10.1007/s10853-018-2969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2969-x

Keywords

Navigation