Skip to main content
Log in

Enhanced ferromagnetic properties of N2 plasma-treated carbon nanotubes

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nitrogen plasma treatment protocol has been applied to carbon nanotubes as a way to modulate their magnetic properties by the microwave plasma chemical vapor deposition method. The nitrogen treatment is a simple and effective strategy to fundamentally affect the magnetic performance of CNTs, which is related to the microwave power and the time of the treatment. The best treatment time is 30 min with the microwave power of 120 W corresponding to the N content (defined N/C atomic ratio in at.%) which is 2.15 at.% and the biggest value of Ms is 0.5227 emu/g. Using Raman, XPS and EDS mapping, it is proved that N exists in CNTs and the pyridine N and amine N bonding configurations contribute to ferromagnetic origin. Our study of N2 plasma treatment doping into CNTs to enhance ferromagnetic properties provides an effective technique for the N doping and massive synthesis of ferromagnetic graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yan DC, Chen SY, Wu MK et al (2010) Ferromagnetism of double-walled carbon nanotubes. Appl. Phys. Lett. 96:227201

    Google Scholar 

  2. Bhowmick S, Shenoy VB (2008) Edge state magnetism of single layer graphene nanostructures. J. Chem. Phys. 128:244717

    Article  Google Scholar 

  3. Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys. Rev. B 75:125408

    Article  Google Scholar 

  4. Zhou J, Wang Q, Sun Q et al (2009) Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9:3867–3870

    Article  CAS  Google Scholar 

  5. Červenka J, Katsnelson M, Flipse C (2009) Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 5(11):840–844

    Article  Google Scholar 

  6. Talapatra S, Ganesan PG, Kim T et al (2005) Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 95(9):097201

    Article  CAS  Google Scholar 

  7. Islam MF, Milkie DE, Torrens ON et al (2005) Magnetic heterogeneity and alignment of single wall carbon nanotubes. Phys. Rev. B 71(20):201401

    Article  Google Scholar 

  8. Shiozawa H, Pichler T, Kramberger C et al (2007) Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules. Opt. Mater. Express 2(7):914–919

    Google Scholar 

  9. Shao D, Chen C, Wang X (2012) Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chem. Eng. J. 185–186(6):144–150

    Article  Google Scholar 

  10. Ajayan PM (1999) Nanotubes from carbon—chemical reviews. Chem. Rev. 99:1787–1799

    Article  CAS  Google Scholar 

  11. Wei D, Liu Y, Cao L et al (2011) Synthesis and photoelectric properties of coaxial schottky junctions of ZnS and carbon nanotubes. Chem. Mater. 22(2):288–293

    Article  Google Scholar 

  12. Chen P, Xiao T, Qian Y et al (2013) A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 25(23):3192–3196

    Article  CAS  Google Scholar 

  13. Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  Google Scholar 

  14. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2(5):781–794

    Article  CAS  Google Scholar 

  15. Ma Z, Wu C, Wang J, Zhao H, Zhang L, Fu Q, Wang C (2016) Development of a plate-to-plate MPCVD reactor configuration for diamond synthesis. Diamond Relat. Mater. 66:135–140

    Article  CAS  Google Scholar 

  16. Fan M, Lin J, Zhang H et al (2015) In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas. Chem. Commun. 51(86):15720–15723

    Article  CAS  Google Scholar 

  17. Chetty R, Kundu S, Xia W et al (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim. Acta 54(17):4208–4215

    Article  CAS  Google Scholar 

  18. Hassan H, Abdelsayed V, Khder A et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19(23):3832–3837

    Article  CAS  Google Scholar 

  19. Yang Q, Hou P, Unno M, Yamauchi S et al (2005) Dual raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. Nano Lett. 5(12):2365–2469

    Article  Google Scholar 

  20. Lee Y, Kim N, Bae S, Park J (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 C. J. Phys. Chem. B 47:12958–12963

    Article  Google Scholar 

  21. Jang J, Lee K, Lyu S et al (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84(15):2877–2879

    Article  CAS  Google Scholar 

  22. Esquinazi P, Setzer A, Hoehne R et al (2002) Ferromagnetism in oriented graphite samples. Phys. Rev. B 66(2):024429

    Article  Google Scholar 

  23. Eng AY, Poh HL, Šaněk F et al (2013) Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via birch reduction of graphite oxides. ACS Nano 7(7):5930–5939

    Article  CAS  Google Scholar 

  24. Qin S, Xu Q (2016) Room temperature ferromagnetism in N2 plasma treated graphene oxide. J. Alloys Compd. 692:332–338

    Article  Google Scholar 

  25. Tang T, Liu F, Liu Y et al (2015) Robust magnetic moments on the basal plane of the graphene sheet effectively induced by oh groups. Sci Rep. 5:8448

    Article  CAS  Google Scholar 

  26. Wei D, Liu Y, Cao L et al (2006) A new method to synthesize complicated multi-branched carbon nanotubes with controlled architecture and composition. Nano Lett. 6(2):186–192

    Article  CAS  Google Scholar 

  27. Morant C, Andrey J, Prieto P et al (2006) XPS characterization of nitrogen-doped carbon nanotubes. Phys. Status Solidi 203(15):3893

    Article  CAS  Google Scholar 

  28. Li Q, Li J, Yang Z (2007) Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. Anal. Chim. Acta 583(1):147–152

    Article  CAS  Google Scholar 

  29. Xu H, Shao M, Chen T et al (2012) Magnetism-assisted assembled porous Fe3O4, nanoparticles and their electrochemistry for dopamine sensing. Microporous Mesoporous Mater. 153(3):35–40

    Article  CAS  Google Scholar 

  30. Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22(18):8911–8915

    Article  CAS  Google Scholar 

  31. Zhang Y, Talapatra S, Kar S et al (2007) First-principles study of defect-induced magnetism in carbon. Phys. Rev. Lett. 99(10):107201

    Article  CAS  Google Scholar 

  32. Kulszewicz-Bajer I, Gosk J, Pawłowski M et al (2007) Ferromagnetic spins interaction in poly(m-p-aniline). J. Phys. Chem. B 111(32):9421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate financial support from the National Natural Science Foundation of China (91622122), the Natural Science Foundation of Hubei Province (2016CFB387) and the Hubei Provincial Department of Education (Q20161509, D20151506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Zhao, H., Xiong, L. et al. Enhanced ferromagnetic properties of N2 plasma-treated carbon nanotubes. J Mater Sci 54, 2307–2314 (2019). https://doi.org/10.1007/s10853-018-2963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2963-3

Keywords

Navigation