Skip to main content
Log in

Organic photovoltaic cell analysis through quantum efficiency and scanning tunneling microscopy of the donor/blend as an active film

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work is reported a comparison of the film morphology, film molecular ordering and X-ray diffraction pattern between two of the most common and efficient donor polymers used in organic photovoltaic (OPV) cells: PTB7 and PTB7-Th. These comparisons indicate that PTB7-Th film chains are somewhat thicker and less spaced than those for PTB7; also, PTB7-Th films have a slightly better organized structure and higher co-planarity, which could provide a possible better electrical charge transport. On the order hand, an analysis of the external/internal quantum efficiency (EQE/IQE) of OPVs, based on PTB7-Th, as a function of the active layer thickness ranging from 40 to 165 nm was carried out. It was used the bulk heterojunction architecture to fabricate OPVs cells under the configuration glass/ITO/PEDOT:PSS/PTB7-Th:PC71BM/PFN/FM (Field’s Metal: eutectic alloy, composed by 32.5% Bi, 51% In and 16.5% Sn by weight that melts at 62 °C). IQE spectra were determined by using the active layer absorption calculated through the transfer matrix method (TMM). Our results show a significant reduction of IQE when increasing the active layer thickness above 120 nm. IQE decreases, and consequently EQE and PCE, mainly due to the reduction in charge carriers collection probability. On the reversed side, when the active layer is very thin (< 70 nm), there exists also a decrease in the IQE values. A comparison between the experimental measurements and theoretical simulations (by TMM) is discussed in order to have better understanding of the OPVs performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Che X, Li Y, Qu Y, Forrest S-R (2018) High fabrication yield organic tandem photovoltaics combining vacuum and solution processed subcells with 15% efficiency. Nat Energy 3:422–427

    Article  CAS  Google Scholar 

  2. Romero-Borja D, Maldonado J-L, Barbosa-Garcia O, Rodríguez M, de Leon A, Fernandez S, Perez-Gutierrez E (2018) Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes. Carbon 134:301–309

    Article  CAS  Google Scholar 

  3. Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J (2018) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater 30:1800613-1–1800613-7

    Google Scholar 

  4. Sun Y, Li G, Wang L, Huai Z, Fan R, Huang S, Fu G, Yang S (2018) Simultaneous enhancement of short-circuit current density, open circuit voltage and fill factor in ternary organic solar cells based on PTB7-Th:ITM:PC71BM. Sol Energy Mater Sol Cells 182:45–51

    Article  CAS  Google Scholar 

  5. Cao W, Xue J (2014) Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci 7:2123–2144

    Article  CAS  Google Scholar 

  6. Moon S, Khadtare S, Wong M, Han S-H, Bazan G-C, Choi H (2018) Hole transport layer based on conjugated polyelectrolytes for polymer solar cells. J Colloid Interface Sci 518:21–26

    Article  CAS  Google Scholar 

  7. Guan Q et al (2018) Highly efficient polymer solar cells employing natural chlorophyllin as a cathode interfacial layer. J Mater Chem A 6:464–468

    Article  CAS  Google Scholar 

  8. Nemnes G-A, Iftimie S, Palici A, Nicolaev A, Mitran T-L, Radu A, Antohe S (2017) Optimization of the structural configuration of ICBA/P3HT photovoltaic cells. Appl Surf Sci 424:264–268

    Article  CAS  Google Scholar 

  9. Sajjad M-T, Blaszczyk O, Jagadamma L-K, Roland T-J, Chowdhury M, Ruseckas A, Samuel I-D-W (2018) Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics. J Mater Chem A 6:9445–9450

    Article  CAS  Google Scholar 

  10. Kozub D-R, Vakhshouri K, Vajjala-Kesava S, Wang C, Hexemer A, Gomez E-D (2012) Direct measurements of exciton diffusion length limitations on organic solar cell performance. Chem Commun 48:5859–5861

    Article  CAS  Google Scholar 

  11. Xu W-L, Wu B, Zheng F, Wang H-B, Wang Y-Z, Bian F-G, Hao X-T, Zhu F (2015) Homogeneous phase separation in polymer:fullerene bulk heterojunction organic solar cells. Org Electron 25:266–274

    Article  CAS  Google Scholar 

  12. Kim Y-J (2018) A control of structural morphology via introducing insulating polymers in n-type P(NDI2OD-T2) semiconductor. J Mater Sci 53:10513–10522

    Article  CAS  Google Scholar 

  13. Huang Y, Kramer E-J, Heeger A-J, Bazan G-C (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114:7006–7043

    Article  CAS  Google Scholar 

  14. Van Franeker J-J, Turbiez M, Li W, Wienk M-M, Janssen RA-J (2015) A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat Commun 6:6229-1–6229-8

    Google Scholar 

  15. Hassan A, Kadem B, Cranton W (2017) Organic solar cells: study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films 636:760–764

    Article  CAS  Google Scholar 

  16. Ramani R, Alam S (2013) A comparative study on the influence of alkyl thiols on the structural transformations in P3HT/PCBM and P3OT/PCBM blends. Polymer 54:6785–6792

    Article  CAS  Google Scholar 

  17. Peet J et al (2011) Bulk heterojunction solar cells with thick active layers and high fill factors enabled by a bithiophene-co-thiazolothiazole push-pull copolymer. Appl Phys Lett 98:043301-1–043301-3

    Article  Google Scholar 

  18. Park S-H et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3:297–302

    Article  CAS  Google Scholar 

  19. Pivrikas A, Neugebauer H, Sariciftci N-S (2010) Charge carrier lifetime and recombination in bulk heterojunction solar cells. IEEE J Sel Top Quant Electron 16:1746–1758

    Article  CAS  Google Scholar 

  20. Moon J-S, Jo J, Heeger A-J (2012) Nanomorphology of PCDTBT:PC70BM bulk heterojunction solar cells. Adv Energy Mater 2:304–308

    Article  CAS  Google Scholar 

  21. Park H, An J, Song J, Lee M, Ahn H, Jahnel M, Im C (2015) Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells. Sol Energy Mater Sol Cells 143:242–249

    Article  CAS  Google Scholar 

  22. Sievers D-W, Shrotriya V, Yang Y (2006) Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J Appl Phys 100:114509-1–114509-7

    Article  Google Scholar 

  23. Kobori T, Fukuda T (2017) Effect of optical intensity distribution on device performances of PTB7-Th:PC71BM-based organic photovoltaic cells. Org Electron 51:76–85

    Article  CAS  Google Scholar 

  24. Katz E-A, Mescheloff A, Visoly-Fisher I, Galagan Y (2016) Light intensity dependence of external quantum efficiency of fresh and degraded organic photovoltaics. Sol Energy Mater Sol 144:273–280

    Article  CAS  Google Scholar 

  25. Teran-Escobar G et al (2012) On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses. Phys Chem Chem Phys 14:11824–11845

    Article  CAS  Google Scholar 

  26. Armin A, Velusamy M, Wolfer P, Zhang Y, Burn P-L, Meredith P, Pivrikas A (2014) Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photon 1:173–181

    Article  CAS  Google Scholar 

  27. Dennler G, Forberich K, Scharber M-C, Brabec C-J, Tomiš I, Hingerl K, Fromherz T (2007) Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells. J Appl Phys 102:054516-1–054516-7

    Google Scholar 

  28. Moulé A-J, Bonekamp J-B, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100:094503-1–094503-7

    Article  Google Scholar 

  29. Slooff L-H, Veenstra S-C, Kroon J-M, Moet D-J, Sweelssen J (2007) Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl Phys Lett 90:143506-1–143506-3

    Article  Google Scholar 

  30. Jung S, Kim K-Y, Lee Y-I, Youn J-H, Moon H-T, Jang J, Kim J (2011) Optical modeling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method. Jpn J Appl Phys 50:122301-1–122301-8

    Article  Google Scholar 

  31. Huang J, Carpenter J-H, Li C-Z, Yu J-S, Ade H, Jen A-K-Y (2015) Highly efficient organic solar cells with improved vertical donor–acceptor compositional gradient via an inverted off-center spinning method. Adv Mater 28:967–974

    Article  Google Scholar 

  32. Fan R, Huai Z, Sun Y, Li X, Fu G, Huang S, Wang L, Yang S (2017) Enhanced performance of polymer solar cells based on PTB7-Th:PC71BM by doping with 1-bromo-4-nitrobenzene. J Mater Chem C 5:10985–10990

    Article  CAS  Google Scholar 

  33. Chen J-D et al (2018) Polymer solar cells with 90% external quantum efficiency featuring an ideal light- and charge-manipulation layer. Adv Mater 30:1706083-1–1706083-8

    Google Scholar 

  34. Lee W, Jeong S, Lee C, Han G, Cho C, Lee J-Y (2017) Self-organization of polymer additive, poly(2-vinylpyridine) via one-step solution processing to enhance the efficiency and stability of polymer solar cells. Adv Energy Mater 7:1602812-1–1602812-9

    Google Scholar 

  35. Huang L et al (2016) High-performance polymer solar cells realized by regulating the surface properties of PEDOT:PSS interlayer from ionic liquids. ACS Appl Mater Interfaces 8:27018–27025

    Article  CAS  Google Scholar 

  36. Bencheikh F, Duche D, Ruiz C-M, Simon J-J, Escoubas L (2015) Study of optical properties and molecular aggregation of conjugated low band gap copolymers: PTB7 and PTB7-Th. J Phys Chem C 119:24643–24648

    Article  CAS  Google Scholar 

  37. Liao S-H, Jhuo H-J, Cheng Y-S, Chen S-A (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25:4766–4771

    Article  CAS  Google Scholar 

  38. Barreiro-Argüelles D, Ramos-Ortiz G, Maldonado J-L, Pérez-Gutiérrez E, Romero-Borja D, Álvarez-Fernández A (2017) PTB7:PC71BM-based solar cells fabricated with the eutectic alloy field’s metal as an alternative cathode and the influence of an electron extraction layer. IEEE J Photovolt 7:191–198

    Article  Google Scholar 

  39. Pérez-Gutiérrez E et al (2017) Organic solar cells all made by blade and slot–die coating techniques. Sol Energy 146:79–84

    Article  Google Scholar 

  40. Pérez-Gutiérrez E, Barreiro-Argüelles D, Maldonado J-L, Meneses-Nava M-A, Barbosa-García O, Ramos-Ortíz G, Rodríguez M, Fuentes-Hernández C (2016) Semiconductor polymer/top electrode interface generated by two deposition methods and its influence on organic solar cell performance. ACS Appl Mater Interfaces 8:28763–28770

    Article  Google Scholar 

  41. Barreiro-Argüelles D, Ramos-Ortíz G, Maldonado J-L, Pérez-Gutiérrez E, Romero-Borja D, Meneses-Nava M-A, Nolasco J-C (2018) Stability study in organic solar cells based on PTB7:PC71BM and the scaling effect of the active layer. Sol Energy 163:510–518

    Article  Google Scholar 

  42. Tada K (2017) Characteristics of PTB7-Th:C70 bulk heterojunction photocells under low-light illumination: critical effect of dark parallel resistance. Phys Status Solidi 214:1700018-1–1700018-6

    Google Scholar 

  43. Ha NTN et al (2017) Ester formation at the liquid–solid interface. Beilstein J Nanotechnol 8:2139–2150

    Article  CAS  Google Scholar 

  44. Cao H, Tahara K, Itano S, Tobe Y, De Feyter S (2017) Odd-even effects in chiral phase transition at the liquid/solid interface. J Phys Chem C 121:10430–10438

    Article  CAS  Google Scholar 

  45. Palma G, Cozzarini L, Capria E, Fraleoni-Morgera A (2015) A home-made system for IPCE measurement of standard and dye-sensitized solar cells. Rev Sci Instrum 86:013112-1–013112-7

    Article  Google Scholar 

  46. Refractive index database. https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Moerland. Accessed 25 Sept 2018

  47. Salinas J-F, Yip H-L, Chueh C-C, Li C-Z, Maldonado J-L, Jen AK-Y (2012) Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells. Adv Mater 24:6362–6367

    Article  CAS  Google Scholar 

  48. Palik E-D (1985) Handbook of optical constants of solids I. Academic Press, College Park

    Google Scholar 

  49. Palik E-D (1991) Handbook of optical constants of solids II. Academic Press, College Park

    Google Scholar 

  50. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  CAS  Google Scholar 

  51. Lim L-W, Aziz F, Muhammad F-F, Supangat A, Sulaiman K (2016) Electrical properties of Al/PTB7-Th/n-Si metal–polymer–semiconductor Schottky barrier diode. Synth Met 221:169–175

    Article  CAS  Google Scholar 

  52. Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling S-B, Su W-F (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16:326–336

    Article  CAS  Google Scholar 

  53. Supasai T, Amornkitbamrung V, Thanachayanont C, Tang I-M, Sutthibutpong T, Rujisamphan N (2017) Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell. Appl Surf Sci 422:509–517

    Article  CAS  Google Scholar 

  54. Li W, Guo B, Chang C, Guo X, Zhang M, Li Y (2016) Efficient polymer solar cells based on a copolymer of meta-alkoxy-phenyl-substituted benzodithiophene and thieno[3,4-b]thiophene. J Mater Chem A 4:10135–10141

    Article  CAS  Google Scholar 

  55. Tang B, Liu J, Cao X, Zhao Q, Yu X, Zheng S, Han Y (2017) Restricting the liquid–liquid phase separation of PTB7-Th:PF12TBT:PC71BM by enhanced PTB7-Th solution aggregation to optimize the interpenetrating network. RSC Adv 7:17913–17922

    Article  CAS  Google Scholar 

  56. Zhao L, Zhao S, Xu Z, Qiao B, Huang D, Xu X (2016) Two effects of 1,8-diiodooctane on PTB7-Th:PC71BM polymer solar cells. Org Electron 34:188–192

    Article  CAS  Google Scholar 

  57. Islam M-S (2017) Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Org Electron 41:143–156

    Article  CAS  Google Scholar 

  58. Burkhard G-F, Hoke E-T, McGehee M-D (2010) Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv Mater 22:3293–3297

    Article  CAS  Google Scholar 

  59. Hedley G-J, Ward A-J, Alekseev A, Howells C-T, Martins E-R, Serrano L-A, Cooke G, Ruseckas A, Samuel ID-W (2013) Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat Commun 4:2867-1–2867-10

    Article  Google Scholar 

  60. Foster S et al (2014) Electron collection as a limit to polymer: PCBM solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM. Adv Energy Mater 4:1400311-1–1400311-12

    Article  Google Scholar 

  61. Ebenhoch B, Thomson SA-J, Genevičius K, Juška G, Samuel ID-W (2015) Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org Electron 22:62–68

    Article  CAS  Google Scholar 

  62. Labban A-E, Chen H, Kirkus M, Barbe J, Del Gobbo S, Neophytou M, McCulloch I, Eid J (2016) Improved efficiency in inverted perovskite solar cells employing a novel diarylamino-substituted molecule as PEDOT:PSS replacement. Adv Energy Mater 6:1502101-1–1502101-5

    Article  Google Scholar 

  63. Yeo J-S et al (2016) In-depth considerations for better polyelectrolytes as interfacial materials in polymer solar cells. Nano Energy 21:26–38

    Article  CAS  Google Scholar 

  64. Azimi H, Morana M, Ameri T, Dastmalchi B, Scharber M, Hingerl K, Brabec C-J (2011) Determining the internal quantum efficiency of organic bulk heterojunctions based on mono and bis–adduct fullerenes as acceptor. Sol Energy Mater Sol Cells 95:3093–3098

    Article  CAS  Google Scholar 

  65. Liu F et al (2014) Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv Energy Mater 4:1301377-1–1301377-9

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial support from Ce-MIE-Sol 207450/27 (Mexico) and CONACyT-SENER Grant 245754 (Mexico), Fondo Sectorial CONACYT-SENER-Sustentabilidad energética; CONACyT Grant 293371 (Mexico) “Laboratorio Nacional de Materiales Grafénicos (LNMG)”. D. Romero-Borja thanks CONACyT-SENER (Mexico) for a postdoctoral fellowship. Authors also thank to Martín Olmos for his technical support and Christian Albor for XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivia Amargós-Reyes or José-Luis Maldonado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amargós-Reyes, O., Maldonado, JL., Romero-Borja, D. et al. Organic photovoltaic cell analysis through quantum efficiency and scanning tunneling microscopy of the donor/blend as an active film. J Mater Sci 54, 2427–2445 (2019). https://doi.org/10.1007/s10853-018-2956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2956-2

Keywords

Navigation