Skip to main content

Advertisement

Log in

Bi-functionalization of glass surfaces with poly-l-lysine conjugated silica particles and polyethylene glycol for selective cellular attachment and proliferation

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fabrication of microstructured patterns serves as a powerful tool for studying the cellular responses toward synthetic materials at the material–cell interface for tissue engineering. Silica particles can effectively act as a substrate for cellular attachment and growth owing to its biocompatible nature and facile surface chemistry. In the current study, a non-lithographic microfabrication method for patterning of particles was devised using silica particles (~ 600 nm) and epoxy-silane-functionalized glass surfaces. Poly-l-lysine (PLL) was covalently attached to modified silica particles which were subsequently patterned onto the functionalized glass surfaces. PLL played a dual role. Firstly, it served as a bi-linker by covalently attaching modified particles on epoxy functionalized glass surfaces. Secondly, it facilitated cellular attachment on the pattern via electrostatic interactions. The vacant unpatterned regions were passivated with methoxy-polyethylene glycol-amino (MPA) to avoid non-specific cellular attachments. A549 cells were found to grow specifically on the monolayered silica patterns having lower packing density and exhibited stretched morphology, indicating cellular attachment to the substrate, whereas the MPA passivated areas were capable of blocking cell adhesion successfully. The highlight of the reported novel method lies in the dual use of PLL which not only provided necessary control over the surface chemistry by allowing fabrication of desired patterns but also facilitated selective cellular attachment on the generated patterns. Therefore, we report a simple process for micropatterning the cells on desired patterns via surface bi-functionalization for selective cellular attachment and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Voldman J, Gray ML, Schmidt MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Eng 1(1):401–425

    Article  CAS  Google Scholar 

  2. Csucs G, Michel R, Lussi JW, Textor M, Danuser G (2003) Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. Biomaterials 24(10):1713–1720

    Article  CAS  Google Scholar 

  3. Koh WG, Itle LJ, Pishko MV (2003) Molding of hydrogel microstructures to create multiphenotype cell microarray. Anal Chem 75(21):5783–5789

    Article  CAS  Google Scholar 

  4. Jaiswal N, Hens A, Chatterjee M, Mahata N, Chanda N (2018) Polymeric-patterned surface for biomedical applications. Environmental, chemical and medical sensors. Springer, Singapore, pp 227–251

    Chapter  Google Scholar 

  5. Yap FL, Zhang Y (2007) Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron 22(6):775–788

    Article  CAS  Google Scholar 

  6. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114(12):6423–6461

    Article  CAS  Google Scholar 

  7. Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16):3044–3063

    Article  CAS  Google Scholar 

  8. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Biomanufacturing. Springer, Berlin, pp 269–305

    Chapter  Google Scholar 

  9. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Article  CAS  Google Scholar 

  10. Carrico IS, Maskarinec SA, Heilshorn SC, Mock ML, Liu JC, Nowatzki PJ, Franck C, Ravichandran G, Tirrell DA (2007) Lithographic patterning of photoreactive cell-adhesive proteins. J Am Chem Soc 129(16):4874–4875

    Article  CAS  Google Scholar 

  11. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373

    Article  CAS  Google Scholar 

  12. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (2006) Patterning proteins and cells using soft lithography. In: Williams DF (ed) The biomaterials: silver jubilee compendium. Elsevier, Amsterdam, pp 161–174

    Chapter  Google Scholar 

  13. Suh KY, Seong J, Khademhosseini A, Laibinis PE, Langer R (2004) A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials 25(3):557–563

    Article  CAS  Google Scholar 

  14. Ramalingama M, Tiwari A (2010) Spatially controlled cell growth using patterned biomaterials. Adv Mater Lett 1:179–187

    Article  Google Scholar 

  15. Takeda I, Kawanabe M, Kaneko A (2015) Autonomous patterning of cells on microstructured fine particles. Mater Sci Eng C 50:173–178

    Article  CAS  Google Scholar 

  16. Ito Y (1999) Surface micropatterning to regulate cell functions. Biomaterials 20(23):2333–2342

    Article  CAS  Google Scholar 

  17. Halas NJ (2008) Nanoscience under glass: the versatile chemistry of silica nanostructures. ACS Nano 2(2):179–183

    Article  CAS  Google Scholar 

  18. Tarpani L, Morena F, Gambucci M, Zampini G, Massaro G, Argentati C, Emiliani C, Martino S, Latterini L (2016) The influence of modified silica nanomaterials on adult stem cell culture. Nanomaterials 6(6):E104. https://doi.org/10.3390/nano6060104

    Article  CAS  Google Scholar 

  19. Colilla M, Martínez-Carmona M, Sánchez-Salcedo S, Ruiz-González ML, González-Calbet JM, Vallet-Regí M (2014) A novel zwitterionic bioceramic with dual antibacterial capability. J Mater Chem B 2(34):5639–5651

    Article  CAS  Google Scholar 

  20. Huo Q, Liu J, Wang LQ, Jiang Y, Lambert TN, Fang E (2006) A new class of silica cross-linked micellar core–shell nanoparticles. J Am Chem Soc 128(19):6447–6453

    Article  CAS  Google Scholar 

  21. Ambrogi V, Perioli L, Pagano C, Latterini L, Marmottini F, Ricci M, Rossi C (2012) MCM-41 for furosemide dissolution improvement. Microp Mesop Mater 147(1):343–349

    Article  Google Scholar 

  22. Latterini L, Tarpani L (2011) Hierarchical assembly of nanostructures to decouple fluorescence and photothermal effect. J Phys Chem C 115(43):21098–21104

    Article  CAS  Google Scholar 

  23. Leidner A, Weigel S, Bauer J, Reiber J, Angelin A, Grösche M, Scharnweber T, Niemeyer CM (2018) Biopebbles: DNA-functionalized core–shell silica nanospheres for cellular uptake and cell guidance studies. Adv Funct Mater 28(18):1707572

    Article  Google Scholar 

  24. Witecka A, Yamamoto A, Swieszkowski W (2014) Improvement of cytocompatibility of magnesium alloy ZM21 by surface modification. Magnesium technology. Springer, Berlin, pp 375–380

    Google Scholar 

  25. Karakoy M, Gultepe E, Pandey S, Khashab MA, Gracias DH (2014) Silane surface modification for improved bioadhesion of esophageal stents. Appl Surf Sci 311:684–689

    Article  CAS  Google Scholar 

  26. Kim JB, Premkumar T, Giani O, Robin JJ, Schue F, Geckeler KE (2007) A mechanochemical approach to nanocomposites using single-wall carbon nanotubes and poly(l-lysine). Macromol Rapid Commun 28(6):767–771

    Article  CAS  Google Scholar 

  27. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25(20):12030–12033

    Article  CAS  Google Scholar 

  28. Kuo YC, Ku HF, Rajesh R (2017) Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering. Mater Sci Eng C 78:265–277

    Article  CAS  Google Scholar 

  29. Liu T, Hu Y, Tan J, Liu S, Chen J, Guo X, Pan C, Li X (2017) Surface biomimetic modification with laminin-loaded heparin/poly-l-lysine nanoparticles for improving the biocompatibility. Mater Sci Eng C 71:929–936

    Article  CAS  Google Scholar 

  30. Markov A, Wolf N, Yuan X, Mayer D, Maybeck V, Offenhäusser A, Wördenweber R (2017) Controlled engineering of oxide surfaces for bioelectronics applications using organic mixed monolayers. ACS Appl Mater Interfaces 9(34):29265–29272

    Article  CAS  Google Scholar 

  31. Jolles A, Neurath F (1898) A colorimetric method of determining silica in water. Z Angew Chem 11:315

    Article  Google Scholar 

  32. Lin J, Siddiqui JA, Ottenbrite RM (2001) Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym Adv Technol 12(5):285–292

    Article  CAS  Google Scholar 

  33. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Asp 173(1–3):1–38

    Article  CAS  Google Scholar 

  34. Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R (2004) Layer-by-layer deposition of hyaluronic acid and poly-l-lysine for patterned cell co-cultures. Biomaterials 25(17):3583–3592

    Article  CAS  Google Scholar 

  35. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  CAS  Google Scholar 

  36. Chandradoss SD, Haagsma AC, Lee YK, Hwang JH, Nam JM, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp. https://doi.org/10.3791/50549

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by JNU in terms of UPE-II Grant (Grant No. 0046), DST-PURSE (PAC-JNU-DST-PURSE-462 (Phase-II)) and DST-SERB (Grant No. ECR/2015/000498 and YSS/2015/002007). We are thankful to JNU-UGC and DBT for fellowship. We would also like to thank Dr. Gajendra Saini for TEM, Dr. Ruchita Pal for SEM, Mr. Prabhat Kumar for Bright Field Imaging and Mr. Ashok Kumar Sahu for Confocal Analysis at AIRF, JNU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranjita Ghosh Moulick or Jaydeep Bhattacharya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, A., Yadav, N., Dhar, K. et al. Bi-functionalization of glass surfaces with poly-l-lysine conjugated silica particles and polyethylene glycol for selective cellular attachment and proliferation. J Mater Sci 54, 2501–2513 (2019). https://doi.org/10.1007/s10853-018-2950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2950-8

Keywords

Navigation