Skip to main content
Log in

Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of the fiber/matrix interface of pultruded glass fiber-reinforced polymer (GFRP) composites exposed to hygrothermal environments, including deionized water immersion and saltwater immersion at 20 ± 5 °C, 30 ± 1 °C, and 60 ± 1 °C for 180 days, was investigated. The effect of moisture absorption on tensile properties was discussed. After 180 days of immersion in deionized water, tensile strength and modulus of specimens decreased 25.7% and 26%, whereas the equivalent respective losses were 2.1% and 18.2% for specimens immersed in saltwater. The short-beam-shear test and the single-fiber fragmentation test were selected to reflect the degradation of macro- and micro-interfacial properties, respectively. After 180-day immersion in deionized water and saltwater at 60 ± 1 °C, the inter-laminar shear strength of specimens decreased 28.8% and 18.5%, respectively, and the corresponding interfacial shear strength decreased 53.2% and 23.5%, indicating that the diffusion rate of micro-interface was higher than that of macro-interface in the fiber direction. Immersion in all media leads to pronounced degradation in tensile strength, modulus, and inter-laminar shear strength. Furthermore, based on the change of interfacial strength and Weibull distribution, a prediction model was proposed to describe the degradation trends and temperature effects on ultimate bearing capacity of pultruded GFRP composites in hygrothermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  1. Fang Y, Chen P, Huo R, Liang Y, Wang L, Liu W (2018) Hygrothermal ageing of polymeric sandwich structures used in structural engineering. Constr Build Mater 165:818–824

    Article  Google Scholar 

  2. Feng J, Guo Z (2016) Effect of temperature and frequency on dynamic mechanical properties of glass/epoxy composites. J Mater Sci 51:2747–2758. https://doi.org/10.1007/s10853-015-9589-5

    Article  CAS  Google Scholar 

  3. Sousa J-M, Correia J-R, Cabral-Fonseca S (2016) Durability of glass fibre reinforced polymer pultruded profiles: comparison between QUV accelerated exposure and natural weathering in a mediterranean climate. Exp Tech 40:207–219

    Article  Google Scholar 

  4. Grammatikos S-A, Evernden M, Mitchels J, Zafari B, Mottram J-T (2016) On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector. Mateer Des 96:283–295

    Article  CAS  Google Scholar 

  5. Sousa J-M, Correia J-R, Cabral-Fonseca S, Diogo A-C (2014) Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Compos Struct 116(1):720–731

    Article  Google Scholar 

  6. Wang J, Zhou W, Luo F, Zhu D, Qing Y (2017) Mechanical performance of nanosilica filled quartz fiber/polyimide composites at room and elevated temperatures. J Mater Sci 52(20):12207–12220. https://doi.org/10.1007/s10853-017-1341-x

    Article  CAS  Google Scholar 

  7. Feng P, Wang J, Wang Y, Loughery D, Niu D (2014) Effects of corrosive environments on properties of pultruded GFRP plates. Compos Part B 67:427–433

    Article  CAS  Google Scholar 

  8. Repon M-R-U, Motaleb K-Z-M-A, Islam M-T, Mamun R-A, Mithu M-M-R (2017) Tensile and water absorption properties of jute and pineapple fabric reinforced polyester composite. Int J Compos Mater 7(2):72–76

    CAS  Google Scholar 

  9. Silva M-A-G, Fonseca B-S-D, Biscaia H (2014) On estimates of durability of FRP based on accelerated tests. Compos Struct 116(9):377–387

    Article  Google Scholar 

  10. Guermazi N, Tarjem A-B, Ksouri I, Ayedi H-F (2016) On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos Part B 85:294–304

    Article  CAS  Google Scholar 

  11. Gu Y, Liu H, Li M, Li Y, Zhang Z (2014) Macro- and micro-interfacial properties of carbon fiber reinforced epoxy resin composites under hygrothermal treatments. J Reinf Plast Compos 33(4):369–379

    Article  Google Scholar 

  12. Ramirez F-A, Carlsson L-A, Acha B-A (2008) Evaluation of water degradation of vinylester and epoxy matrix composites by single fiber and composite tests. J Mater Sci 43(15):5230–5242. https://doi.org/10.1007/s10853-008-2766-z

    Article  CAS  Google Scholar 

  13. Chin J-W, Nguyen T, Aouadi K (2015) Sorption and diffusion of water, salt water, and concrete pore solution in composite matrices. J Appl Polym Sci 71(3):483–492

    Article  Google Scholar 

  14. ASTM International (2014) Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. ASTM D5229/D5229M, ASTM International, West Conshohocken, PA

  15. ASTM International (2014) Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039/D3039M-14, ASTM International, West Conshohocken, PA

  16. Whitney J-M, Browning C-E (1985) On short-beam shear tests for composite materials. Exp Mech 25(3):294–300

    Article  Google Scholar 

  17. ASTM International (2015) Standard test method for short-beam strength of polymer matrix composite materials and their laminates. ASTM D2344/D2344M, ASTM International, West Conshohocken, PA

  18. Kelly A, Tyson W-R (1965) Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13:329–350

    Article  CAS  Google Scholar 

  19. Karbhari V-M, Abanilla M-A (2007) Design factors, reliability, and durability prediction of wet layup carbon/epoxy used in external strengthening. Compos Part B 38(1):10–23

    Article  Google Scholar 

  20. Sethi S, Ray B-C (2015) Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Adv Colloid Interface Sci 217:43–67

    Article  CAS  Google Scholar 

  21. Fang Y, Wang K, Hui D, Xu F, Liu W, Yang S, Wang L (2017) Monitoring of seawater immersion degradation in glass fibre reinforced polymer composites using quantum dots. Compos Part B 112:93–102

    Article  CAS  Google Scholar 

  22. Meng M, Le H, Grove S, Rizvi M-J (2016) Moisture effects on the bending fatigue of laminated composites. Compos Struct 154:49–60

    Article  Google Scholar 

  23. Xian G, Li H, Su X (2012) Water absorption and hygrothermal aging of ultraviolet cured glass-fiber reinforced acrylate composites. Polym Compos 33(7):1120–1128

    Article  CAS  Google Scholar 

  24. Firdosh S, Murthy H-N-N, Pal R, Angadi G, Raghavendra N (2015) Durability of GFRP nano-composites subjected to hygrothermal aging. Compos Part B 69(69):443–451

    Article  CAS  Google Scholar 

  25. Xin H, Liu Y, Mosallam A, Zhang Y (2016) Moisture diffusion and hygrothermal aging of pultruded glass fiber reinforced polymer laminates in bridge application. Compos Part B 100:197–207

    Article  CAS  Google Scholar 

  26. Shen C-H, Springer G-S (1976) Moisture absorption and desorption of composite materials. J Compos Mater 10(1):2–20

    Article  Google Scholar 

  27. Yang Q, Xian G, Karbhari V-M (2008) Hygrothermal aging of an epoxy adhesive used in FRP strengthening of concrete. J Appl Polym Sci 107(4):2607–2617

    Article  CAS  Google Scholar 

  28. Karbhari V-M (2004) E-glass/vinylester composites in aqueous environments: effects on short-beam shear strength. J Compos Constr 8(2):148–156

    Article  CAS  Google Scholar 

  29. Valadez-Gonzalez A, Cervantes-Uc J-M, Olayo R, Herrera-Franco P-J (1999) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos Part B 30(30):309–320

    Article  Google Scholar 

  30. Chu W, Wu L, Karbhari V-M (2004) Durability evaluation of moderate temperature cured E-glass/vinylester systems. Compos Struct 66(1):367–376

    Article  Google Scholar 

  31. Abanilla M-A, Li Y, Karbhari V-M (2006) Durability characterization of wet layup graphite/epoxy composites used in external strengthening. Compos Part B 37(2–3):200–212

    Google Scholar 

  32. Duigou A-L, Davies P, Baley C (2013) Exploring durability of interfaces in flax fibre/epoxy micro-composites. Compos A Appl Sci Manuf 48(1):121–128

    Article  Google Scholar 

  33. Kafodya I, Xian G, Li H (2014) Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: water uptake and effects on the mechanical properties. Compos Part B 70:138–148

    Article  Google Scholar 

  34. Marouani S, Curtil L, Hamelin P (2012) Aging of carbon/epoxy and carbon/vinylester composites used in the reinforcement and/or the repair of civil engineering structures. Compos Part B 43(4):2020–2030

    Article  CAS  Google Scholar 

  35. Zheng X-H, Huang P-Y, Guo X-Y, Huang J-L (2016) Experimental study on bond behavior of FRP-concrete interface in hygrothermal environment. Int J Polym Sci 2016(5):1–12

    Article  CAS  Google Scholar 

  36. Sawpan M-A, Mamun A-A, Holdsworth P-G (2014) Long term durability of pultruded polymer composite rebar in concrete environment. Mater Des 57(5):616–624

    Article  CAS  Google Scholar 

  37. Han K-L, Kim D-S, Won J-S, Da Y-J, Lee HJ (2016) Effects of thermal and humidity aging on the interfacial adhesion of polyketone fiber reinforced natural rubber. Compos Adv Mater Sci Eng 2016:1–8

    Google Scholar 

  38. Aldajah S, Alawsi G, Rahmaan S-A (2009) Impact of sea and tap water exposure on the durability of GFRP laminates. Mater Des 30(5):1835–1840

    Article  CAS  Google Scholar 

  39. Mourad A-H-I, Abdel-Magid B-M, EI-Maaddawy T, Grami ME (2010) Effect of seawater and warm environment on glass/epoxy and glass polyurethane composites. Appl Compos Mater 17(5):557–573

    Article  CAS  Google Scholar 

  40. Ghorbel I, Valentin D (1993) Hydrothermal effects on the physic-chemical properties of pure and glass fiber reinforced polyester and vinylester resins. Polym Compos 14(4):324–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China (Grant Nos. 51608264 and 51778285) and Jiangsu Government Scholarship for Overseas Studies (Grant No. JS-2016-083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqing Liu or Yuan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liu, W., Fang, Y. et al. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites. J Mater Sci 54, 2102–2121 (2019). https://doi.org/10.1007/s10853-018-2944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2944-6

Keywords

Navigation