Skip to main content

Advertisement

Log in

Graphitic carbon nitride nanosheets prepared by gaseous molecules assembling for enhanced photocatalytic performance

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4), a new two-dimensional (2D) polymeric semiconductor, is considered as one of the most promising candidates for visible-light photocatalytic H2 evolution. The synthesis of thin-layered g-C3N4 is a facile approach to enhancing its photocatalytic properties. Here, a novel, cost-efficient, and time-saving strategy is reported to obtain 2D g-C3N4. In this equipment, bulk g-C3N4 and thin-layered g-C3N4 (denoted as G-CN) assembled from gaseous molecules were obtained simultaneously. The thin-layered g-C3N4 possesses more negative conduction-band minimum (~ 0.18 eV) relative to the bulk counterparty, leading to stronger redox ability. What is more, the carrier mobility and separation efficiency are both improved. As a result, the water splitting performance and photodegradation efficiency for methylene blue on thin-layered g-C3N4 are dramatically improved. The H2 evolution rate and half-time of photodegradation obtained by kinetic fitting reached 48.83 μmol h−1 and about 1.5 h, which is much more superior to that of bulk g-C3N4. Generally, the present work may bring out new thinking to synthesize thin-layered 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

    Article  CAS  Google Scholar 

  2. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  3. Lu X, Wang G, Xie S, Shi J, Li W, Tong Y, Li Y (2012) Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem Commun 48:7717–7719

    Article  CAS  Google Scholar 

  4. Xu H, Reunchan P, Ouyang S, Tong H, Umezawa N, Kako T, Ye J (2013) Anatase TiO2 single crystals exposed with high-reactive 111 facets toward efficient H2 evolution. Chem Mater 25:405–411

    Article  CAS  Google Scholar 

  5. Xiang Q, Cheng B, Yu J (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Catal B Environ 138:299–303

    Article  Google Scholar 

  6. Mahler B, Hoepfner V, Liao K, Ozin GA (2014) Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc 136:14121–14127

    Article  CAS  Google Scholar 

  7. Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B (2014) Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6:4830–4842

    Article  CAS  Google Scholar 

  8. Zhang J, Wang Y, Jin J, Zhang J, Lin Z, Huang F, Yu J (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5:10317–10324

    Article  CAS  Google Scholar 

  9. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76

    Article  CAS  Google Scholar 

  10. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  Google Scholar 

  11. Wang J, Qin C, Wang H, Chu M, Zada A, Zhang X et al (2018) Exceptional photocatalytic activities for CO2 conversion on AlO bridged g-C3N4/α-Fe2O3 Z-scheme nanocomposites and mechanism insight with isotopesZ. Appl Catal B Environ 221:459–466

    Article  CAS  Google Scholar 

  12. Qian J, Yan J, Shen C, Xi F, Dong X, Liu J (2018) Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. J Mater Sci. https://doi.org/10.1007/s10853-018-2509-8

    Article  Google Scholar 

  13. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606

    Article  Google Scholar 

  14. Fan X, Zhang L, Wang M, Huang W, Zhou Y, Li M et al (2016) Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution. Appl Catal B Environ 182:68–73

    Article  CAS  Google Scholar 

  15. Dong F, Zhao Z, Sun Y, Zhang Y, Yan S, Wu Z (2015) An advanced semimetal–organic bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ Sci Technol 49:12432–12440

    Article  CAS  Google Scholar 

  16. Tonda S, Kumar S, Shanker V (2016) Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C3N4 nanosheets under direct sunlight irradiation. Mater Res Bull 75:51–58

    Article  CAS  Google Scholar 

  17. Ye R, Fang H, Zheng YZ, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces 8:13879–13889

    Article  CAS  Google Scholar 

  18. Cheng F, Wang H, Dong X (2015) The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem Commun 51:7176–7179

    Article  CAS  Google Scholar 

  19. Xiong T, Cen W, Zhang Y, Dong F (2016) Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal 6:2462–2472

    Article  CAS  Google Scholar 

  20. Dong G, Zhao K, Zhang L (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun 48:6178–6180

    Article  CAS  Google Scholar 

  21. Zeng Y, Liu X, Liu C, Wang L, Xia Y, Zhang S et al (2018) Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl Catal B Environ 224:1–9

    Article  CAS  Google Scholar 

  22. Xu CQ, Xiao YH, Yu YX, Zhang WD (2018) The role of hydrogen bonding on enhancement of photocatalytic activity of the acidified graphitic carbon nitride for hydrogen evolution. J Mater Sci 53:409–422. https://doi.org/10.1007/s10853-017-1507-6

    Article  CAS  Google Scholar 

  23. Che W, Cheng W, Yao T, Tang F, Liu W, Su H et al (2017) Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. J Am Chem Soc 139:3021–3026

    Article  CAS  Google Scholar 

  24. Zhou Y, Zhang L, Huang W, Kong Q, Fan X, Wang M, Shi J (2016) N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99:111–117

    Article  CAS  Google Scholar 

  25. Li L, Meng Q, Lv H, Shui L, Zhang Y, Zhang Z et al (2018) Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline. Appl. Surf, Sci, p 428

    Google Scholar 

  26. Fang LJ, Li YH, Liu PF, Wang DP, Zeng H, Wang X et al (2017) Facile fabrication of large-aspect-ratio g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. ACS Sustain Chem 5(3):2039–2043

    Article  CAS  Google Scholar 

  27. Wang C, Fan H, Ren X, Fang J, Ma J, Zhao N (2018) Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Mater Charact 139:89–99

    Article  Google Scholar 

  28. Li Y, Yang M, Xing Y, Liu X, Yang Y, Wang X et al (2017) Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13:1701552

    Article  Google Scholar 

  29. Yan J, Han X, Qian J, Liu J, Dong X, Xi F (2017) Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance. J Mater Sci 52:1–12. https://doi.org/10.1007/s10853-017-1419-5

    Article  CAS  Google Scholar 

  30. Ma L, Fan H, Li M, Tian H, Fang J, Dong G (2015) A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light. J Mater Chem A 3:22404–22412

    Article  CAS  Google Scholar 

  31. Ma L, Fan H, Wang J, Zhao Y, Tian H, Dong G (2016) Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl Catal B Environ 190:93–102

    Article  CAS  Google Scholar 

  32. Chen W, Liu TY, Huang T, Liu XH, Zhu JW, Duan GR et al (2015) One-pot hydrothermal route to synthesize the ZnIn2S4/g-C3N4, composites with enhanced photocatalytic activity. J Mater Sci 50:8142–8152. https://doi.org/10.1007/s10853-015-9388-z

    Article  CAS  Google Scholar 

  33. Li Y, Jin R, Xing Y, Li J, Song S, Liu X et al (2016) Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv Energy Mater 6(24):74

    CAS  Google Scholar 

  34. Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652

    Article  CAS  Google Scholar 

  35. Yu Y, Yan W, Gao W, Li P, Wang X, Wu S et al (2017) Aromatic ring substituted g-C3N4 for enhanced photocatalytic hydrogen evolution. J Mater Chem A 5:17199–17203

    Article  CAS  Google Scholar 

  36. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363

    Article  CAS  Google Scholar 

  37. Chuang PK, Wu KH, Yeh TF, Teng H (2016) Extending the π-conjugation of g-C3N4 by incorporating aromatic carbon for photocatalytic H2 evolution from aqueous solution. ACS Sustain Chem Eng 4:5989–5997

    Article  CAS  Google Scholar 

  38. Liang Q, Li Z, Huang ZH, Kang F, Yang QH (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25:6885–6892

    Article  CAS  Google Scholar 

  39. Xia P, Zhu B, Yu J, Cao S, Jaroniec M (2017) Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A 5:3230–3238

    Article  CAS  Google Scholar 

  40. Lyu L, Zhang L, He G, He H, Hu C (2017) Selective H2O2 conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C3N4/CuCo–Al2O3. J Mater Chem A 5:7153–7164

    Article  CAS  Google Scholar 

  41. Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9:12427–12435

    Article  CAS  Google Scholar 

  42. Tong Z, Yang D, Sun Y, Nan Y, Jiang Z (2016) Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 12:4093–4101

    Article  CAS  Google Scholar 

  43. Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC et al (2015) Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater. Interfaces 7:8631–8639

    Article  CAS  Google Scholar 

  44. Choudhury B, Paul KK, Sanyal D, Hazarika A, Giri PK (2018) Evolution of nitrogen-related defects in graphitic carbon nitride nanosheets probed by positron annihilation and photoluminescence spectroscopy. J Phys Chem C 122(16):9209–9219

    Article  CAS  Google Scholar 

  45. Kim JS, Oh JW, Woo SI (2017) Improvement of the photocatalytic hydrogen production rate of g-C3N4 following the elimination of defects on the surface. Catal Today 293–294:8–14

    Article  Google Scholar 

  46. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  47. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho WK (2013) In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5:11392–11401

    Article  CAS  Google Scholar 

  48. Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Trans 46:10678–10684

    Article  CAS  Google Scholar 

  49. Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Edit 55:1830–1834

    Article  CAS  Google Scholar 

  50. Yang L, Huang J, Shi L, Cao L, Liu H, Liu Y et al (2018) Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl Catal B Environ 221:670–680

    Article  CAS  Google Scholar 

  51. Li MX, Kim SH, Choi SW, Goda K, Lee WI (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Compos Part B Eng 96:248–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation (51672220), the SPDRF (20116102130002), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), the Xi’an Science and Technology Foundation (2017086CGRC049-XBGY005, 2017040CG-CG024), the SKLP Foundation (KP201421, KP201523), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2018007), the Shaanxi Provincial Science Foundation (2017KW-018), and the NPU Gaofeng Project (17GH020824) of China. We would like to thank the Analytical and Testing Center of Northwestern Polytechnical University for AFM and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Fan, H., Ning, L. et al. Graphitic carbon nitride nanosheets prepared by gaseous molecules assembling for enhanced photocatalytic performance. J Mater Sci 54, 1462–1474 (2019). https://doi.org/10.1007/s10853-018-2937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2937-5

Keywords

Navigation