Skip to main content
Log in

Effect of Ag2S shell thickness on the photocatalytic properties of ZnO/Ag2S core–shell nanorod arrays

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO/Ag2S core–shell nanorod arrays (NRAs) are successfully fabricated via chemical bath deposition procedure and subsequent successive ionic layer adsorption and reaction (SILAR) technique. The average diameter of ZnO core is about 100 nm, and the thicknesses of Ag2S shell are adjusted from 6 to 35 nm by varying the time of SILAR. ZnO/Ag2S NRAs show an enhancement of absorption in the visible region, and the absorption intensity in the visible region enhances with the increase in Ag2S shell thickness. Compared with pure ZnO NRAs, ZnO/Ag2S NRAs exhibit outstanding photocatalytic activity for degradation of rhodamine B (RhB) aqueous solution under simulated sunlight irradiation. In addition, ZnO/Ag2S NRAs with Ag2S shell thickness of 6 nm display the highest photocatalytic activity, which is 6.0 times higher than that of pure ZnO NRAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Meerbergen K, Willems KA, Dewil R, Impe JV, Appels L, Lievens B (2018) Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. J Biosci Bioeng 125:448–456

    Article  CAS  Google Scholar 

  2. Wu H, Liu Z, Li A, Yang H (2017) Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 174:200–207

    Article  CAS  Google Scholar 

  3. Kalpana K, Selvaraj V (2016) Development of ZnS/SnS/A-FA nanorods at ambient temperature: binary catalyst for the removal of congo red dye and pathogenic bacteria from wastewater. J Ind Eng Chem 41:105–113

    Article  CAS  Google Scholar 

  4. Zhang X, Zhang J, Yu JQ, Zhang Y, Cui ZX, Sun Y, Hou BR (2018) Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl Catal B Environ 220:57–66

    Article  CAS  Google Scholar 

  5. Alam U, Khan A, Raza W, Khan A, Muneer M (2017) Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal Today 284:169–178

    Article  CAS  Google Scholar 

  6. Li W, Wang GJ, Feng YM, Li ZC (2018) Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles. Appl Surf Sci 428:154–164

    Article  CAS  Google Scholar 

  7. Li XY, Wang J, Yang JH, Lang JH, Meng XW, Li XF, Sui YR (2013) Enhanced photocatalytic activity of ZnO microflower arrays synthesized by one-step etching approach. J Mol Catal A Chem 378:1–6

    Article  CAS  Google Scholar 

  8. Wang XW, Zhou CX, Wang WY, Du B, Cai JX, Feng G, Zhang RB (2018) CdSe nanoparticle-sensitized ZnO sheets for enhanced photocatalytic hydrogen evolution rates. J Alloys Compd 747:826–833

    Article  CAS  Google Scholar 

  9. Vaiano V, Matarangolo M, Murcia JJ, Rojas H, Navío JA, Hidalgo MC (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl Catal B Environ 225:197–206

    Article  CAS  Google Scholar 

  10. Yu JJ, Sun DP, Wang TH, Li F (2018) Fabrication of Ag@AgCl/ZnO submicron wire film catalyst on glass substrate with excellent visible light photocatalytic activity and reusability. Chem Eng J 334:225–236

    Article  CAS  Google Scholar 

  11. Zhu LY, Liu ZR, Xia PF, Li H, Xie YH (2018) Synthesis of hierarchical ZnO & graphene composites with enhanced photocatalytic activity. Ceram Int 44:849–856

    Article  CAS  Google Scholar 

  12. Benavente E, Durán F, Sotomayor-Torres C, González G (2018) Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity. J Phys Chem Solids 113:119–124

    Article  CAS  Google Scholar 

  13. Lamba R, Umar A, Mehta SK, Kansal SK (2017) Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Sep Purif Technol 183:341–349

    Article  CAS  Google Scholar 

  14. Wu Y, Xu F, Guo DF, Gao ZY, Wu DP, Jiang K (2013) Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency. Appl Surf Sci 274:39–44

    Article  CAS  Google Scholar 

  15. Tian J, Yan TJ, Qiao Z, Wang LL, Li WJ, You JM, Huang BB (2017) Anion-exchange synthesis of Ag2S/Ag3PO4 core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms. Appl Catal B Environ 209:566–578

    Article  CAS  Google Scholar 

  16. Wang ZL, Zhang HY, Cao HW, Wang LC, Wan ZY, Hao YF, Wang XT (2017) Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance. Int J Hydrog Energy 42:17394–17402

    Article  CAS  Google Scholar 

  17. Khanchandani S, Srivastava PK, Kumar S, Ghosh S, Ganguli AK (2014) Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg Chem 53:8902–8912

    Article  CAS  Google Scholar 

  18. Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalytic properties of ZnO/CdS core–shell nanorods. J Phys Chem C 116:23653–23662

    Article  CAS  Google Scholar 

  19. Zhang JM, Vasei M, Sang YH, Liu H, Claverie JP (2016) TiO2@carbon photocatalysts: the effect of carbon thickness on catalysis. ACS Appl Mater Inter 8:1903–1912

    Article  CAS  Google Scholar 

  20. Ranjith KS, Castillo RB, Sillanpaa M, Kumara RTR (2018) Effective shell wall thickness of vertically aligned ZnO–ZnS core–shell nanorod arrays on visible photocatalytic and photo sensing properties. Appl Catal B Environ 237(2018):128–139

    Article  CAS  Google Scholar 

  21. Zhao HG, Chaker M, Ma DL (2011) Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J Mater Chem 21:17483–17491

    Article  CAS  Google Scholar 

  22. Xu SS, Shen HB, Zhou CH, Yuan H, Liu CS, Wang HZ, Ma L, Li LS (2011) Effect of shell thickness on the optical properties in CdSe/CdS/Zn0.5Cd0.5S/ZnS and CdSe/CdS/ZnxCd1−xS/ZnS Core/multishell nanocrystals. J Phys Chem C 115:20876–20881

    Article  CAS  Google Scholar 

  23. Huo PW, Liu CY, Wu DY, Guan JR, Li JZ, Wang HQ, Tang Q, Li XY, Yan YS, Yuan SQ (2018) Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity. J Ind Eng Chem 57:125–133

    Article  CAS  Google Scholar 

  24. Liu YP, Geng P, Wang JX, Yang ZS, Lu HD, Hai JF, Lu ZH, Fan DY, Li M (2018) In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity. J Colloid Interf Sci 512:784–791

    Article  CAS  Google Scholar 

  25. Zhang XD, Liu XJ, Zhang L, Li DL, Liu SH (2016) Novel porous Ag2S/ZnS composite nanospheres: fabrication and enhanced visible-light photocatalytic activities. J Alloys Compd 655:38–43

    Article  CAS  Google Scholar 

  26. Wang GJ, Li MY, Chen CH, Lv SS, Liao JC, Li ZC (2016) Enhanced field emission properties of ZnO–Ag2S core–shell heterojunction nanowires. Dalton Trans 45:8777–8782

    Article  CAS  Google Scholar 

  27. Zhang Y, Liu CH, Zhu GL, Huang X, Liu W, Hu WG, Song M, He WD, Liu J, Zhai JY (2017) Piezotronic-effect-enhanced Ag2S/ZnO photocatalyst for organic dye degradation. RSC Adv 7:48176–48183

    Article  CAS  Google Scholar 

  28. Li XY, Wang J, Yang JH, Lü SQ, Meng XW, Lang JH, Li XF, Sui YR (2013) Comparison of photocatalytic activity of ZnO rod arrays with various diameter sizes and orientation. J Alloys Compd 580:205–210

    Article  CAS  Google Scholar 

  29. Li XY, Wang J, Yang JH, Lang JH, Cao J, Liu FZ, Fan HG, Gao M, Jiang YH (2013) Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance. Mater Chem Phys 141:929–935

    Article  CAS  Google Scholar 

  30. Zhou XM, Lan JY, Liu G, Deng K, Yang YL, Nie GJ, Yu JG, Zhi LJ (2012) Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew Chem Int Ed 51:178–182

    Article  CAS  Google Scholar 

  31. Kar A, Datta A, Patra A (2010) Fabrication and optical properties of core/shell CdS/LaPO4: Eu nanorods. J Mater Chem 20:916–922

    Article  CAS  Google Scholar 

  32. Liu S, Wang XT, Zhao WX, Wang K, Sang HX, He Z (2013) Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods. J Alloys Compd 568:84–91

    Article  CAS  Google Scholar 

  33. Chen CH, Li ZC, Lin H, Wang GJ, Liao JC, Li MY, Lv SS, Li W (2016) Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S. Dalton Trans 45:3750–3758

    Article  CAS  Google Scholar 

  34. Li XY, Li X, Zhu BY, Wang JS, Lan HX, Chen XB (2017) Synthesis of porous ZnS, ZnO and ZnS/ZnO Nanosheets and their photocatalytic properties. RSC Adv 7:30956–30962

    Article  CAS  Google Scholar 

  35. Li XY, Wei B, Wang J, Li X, Zhai HJ, Yang JH (2016) Synthesis and comparison of the photocatalytic activities of ZnSe(en)0.5, ZnSe and ZnO nanosheets. J Alloys Compd 689:287–295

    Article  CAS  Google Scholar 

  36. Koudelka M, Monnier A, Sanchez J, Augustynski J (1984) Correlation between the surface composition of Pt/TiO2 catalysts and their adsorption behaviour in aqueous solutions. J Mol Catal 25:295–305

    Article  CAS  Google Scholar 

  37. Cai T, Liu YT, Wang LL, Zhang SQ, Zeng YX, Yuan JL, Ma JH, Dong WY, Liu CB, Luo SL (2017) Silver phosphate-based Z-scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ 208:1–13

    Article  CAS  Google Scholar 

  38. Xu YG, Xu H, Li HM, Xia JX, Liu CT, Liu L (2011) Enhance photocatalytic activity of new photocatalytst Ag/AgCl/ZnO. J Alloys Compd 509:3286–3292

    Article  CAS  Google Scholar 

  39. Sadollahkhani A, Kazeminezhad I, Nur O, Willander M (2015) Cation exchange assisted low temperature chemical synthesis of ZnO@Ag2S core–shell nanoparticles and their photo-catalytic properties. Mater Chem Phys 163:485–495

    Article  CAS  Google Scholar 

  40. Warren WL, Seager CH, Tallant DK, Voigt JA, Gnade BE, Vanheusden K (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990

    Article  Google Scholar 

  41. Lv YH, Pan CS, Ma XG, Zong RL, Bai XJ, Zhu YF (2013) Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Appl Catal B Environ 138–139:26–32

    Article  Google Scholar 

  42. Lang JH, Wang JY, Zhang Q, Li XY, Han Q, Wei MB, Sui YR, Wang DD, Yang JH (2016) Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram Int 42:14175–14181

    Article  CAS  Google Scholar 

  43. Vancoppenolle V, Jouan PY, Wautelet M, Dauchot JP, Hecq M (1999) Glow discharge mass spectrometry study of the deposition of TiO2 thin films by direct current reactive magnetron sputtering of a Ti target. J Vac Sci Technol A 17:3317–3321

    Article  CAS  Google Scholar 

  44. Hwang I, Seol M, Kim H, Yong K (2013) Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Appl Phys Lett 103:023902

    Article  Google Scholar 

  45. Pirhashemi M, Habibi-Yangjeh A (2014) Preparation of AgCl–ZnO nanocomposites as highly efficient visible-light photocatalysts in water by one-pot refluxing method. J Alloys Compd 601:1–8

    Article  CAS  Google Scholar 

  46. Wang DD, Han DL, Shi Z, Wang J, Yang JH, Li XY, Song H (2018) Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl Catal B Environ 227:61–69

    Article  CAS  Google Scholar 

  47. Naghizadeh-Alamdari S, Habibi-Yangjeh A, Pirhashemi M (2015) One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts. Solid State Sci 40:111–120

    Article  CAS  Google Scholar 

  48. Akhundi A, Habibi-Yangjeh A (2015) Ternary g-C3N4/ZnO/AgCl nanocomposites: synergistic collaboration on visible-light-driven activity in photodegradation of an organicpollutant. Appl Surf Sci 358:261–269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61378085, 51608226, 21776110) and program for the development of Science and Technology of Jilin province (Item Nos. 20180101206JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, D., Shi, Z. et al. Effect of Ag2S shell thickness on the photocatalytic properties of ZnO/Ag2S core–shell nanorod arrays. J Mater Sci 54, 1226–1235 (2019). https://doi.org/10.1007/s10853-018-2930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2930-z

Keywords

Navigation