Skip to main content

Advertisement

Log in

A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO2 capture and electrochemical applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A highly pyridinic N-doped carbon with total N-species of ~ 15.5 at.% and surface area of ~ 1100 m2/g was obtained from marine biowaste, Enteromorpha prolifera, via hydrothermal carbonization and a mild KOH activation, using melamine as nitrogen source. This offers a simple pathway for large-scale synthesis of N-doped carbon with partial spheres verified from X-ray photoelectron spectroscopy and scanning electron microscopy, showing great perspective in multifunctional activities for carbon capture, oxygen reduction reaction, and supercapacitor. The carbon shows CO2 uptake of ~ 3 mmol/g under ambient conditions with isosteric heat of adsorption up to 40 kJ/mol, in addition to a large capacitance of 214 F/g at 0.5 A/g in 6 M KOH as electrode for supercapacitor. The supercapacitor exhibits superior cycling durability of 98% retention at 2 A/g after 10,000 cycles. Furthermore, the carbon as catalyst also exhibits good stability and resistance to methanol crossover as compared to commercial Pt/C catalyst, followed with a dominant 4e transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  2. Yuan L, Feng C, Wang C, Fu Z, Yang X, Tang Y (2016) Facile fabrication of activated carbonized horseweed-based biomaterials and their application in supercapacitors. J Mater Sci 51:3880–3887. https://doi.org/10.1007/s10853-015-9707-4

    Article  CAS  Google Scholar 

  3. Cai J, Qi J, Yang C, Zhao X (2014) Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl Mater Interfaces 6:3703–3711

    Article  CAS  Google Scholar 

  4. Li PZ, Zhao Y (2013) Nitrogen-rich porous adsorbents for CO2 capture and storage. Chem-Asian J 8:1680–1691

    Article  CAS  Google Scholar 

  5. Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238

    Article  CAS  Google Scholar 

  6. Zhu B, Qiu K, Shang C, Guo Z (2015) Naturally derived porous carbon with selective metal- and/or nitrogen-doping for efficient CO2 capture and oxygen reduction. J Mater Chem A 3:5212–5222

    Article  CAS  Google Scholar 

  7. Zhu G, Ma L, Lv H, Hu Y, Chen T, Chen R, Liang J, Wang X, Wang Y, Yan C, Tie Z, Jin Z, Liu J (2017) Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 9:1237–1243

    Article  CAS  Google Scholar 

  8. Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nitrogen-doped nanoporous carbon derived from waste pomelo peel as a metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 8:8704–8711

    Article  CAS  Google Scholar 

  9. Gao X, Li X, Kong Z, Xiao G, Zhu Y (2018) Bifunctional 3D n-doped porous carbon materials derived from paper towel for oxygen reduction reaction and supercapacitor. Sci Bull 63:621–628

    Article  CAS  Google Scholar 

  10. Sun YN, Sui ZY, Li X, Xiao PW, Wei ZX, Han BH (2018) Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors. ACS Appl Nano Mater 1:609–616

    Article  CAS  Google Scholar 

  11. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xie AJ, Yu SH (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7:4095–4103

    Article  CAS  Google Scholar 

  12. Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sust Energy Rev 90:223–247

    Article  CAS  Google Scholar 

  13. Sevilla M, Falco C, Titirici MM, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2:12792–12797

    Article  CAS  Google Scholar 

  14. Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1:1092–1101

    Article  CAS  Google Scholar 

  15. Guo C, Liao W, Li Z, Sun L, Ruan H, Wu Q, Luo Q, Huang J, Chen C (2016) Coprinus comatus-derived nitrogen-containing biocarbon electrocatalyst with the addition of self-generating graphene-like support for superior oxygen reduction reaction. Sci Bull 61:948–958

    Article  CAS  Google Scholar 

  16. Qu WH, Xu YY, Lu AH, Zhang XQ, Li WC (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresource Technol 189:285–291

    Article  CAS  Google Scholar 

  17. Raymundo-Piñero E, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Funct Mater 19:1032–1039

    Article  Google Scholar 

  18. Song MY, Park HY, Yang DS, Bhattacharjya D, Yu JS (2014) Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. Chemsuschem 7:1755–1763

    Article  CAS  Google Scholar 

  19. Wang Z, Qiang H, Zhu Z, Liu J, Chen C, Zhang D (2018) Facile synthesis of nitrogen-doped mesoporous hollow carbon nanospheres for high-performance supercapacitors. ChemElectroChem 5:2242–2249

    Article  CAS  Google Scholar 

  20. Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Long D, Qiao W, Kumbur EC, Gogotsi Y (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155–164

    Article  CAS  Google Scholar 

  21. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724

    Article  CAS  Google Scholar 

  22. Li Y, Li D, Rao Y, Zhao X, Wu M (2016) Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 105:454–462

    Article  CAS  Google Scholar 

  23. Lei W, Guo J, Wu Z, Xuan C, Xiao W, Wang D (2017) Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors. Sci Bull 62:1011–1017

    Article  CAS  Google Scholar 

  24. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  CAS  Google Scholar 

  25. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  26. Cui J, Xi Y, Chen S, Li D, She X, Sun J, Han W, Yang D, Guo S (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater 26:8487–8495

    Article  CAS  Google Scholar 

  27. Wu X, Tian Z, Hu L, Huang S, Cai J (2017) Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors. RSC Adv 7:32795–32805

    Article  CAS  Google Scholar 

  28. Tian Z, Xiang M, Zhou J, Hu L, Cai J (2016) Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta 211:225–233

    Article  CAS  Google Scholar 

  29. Liu X, Wang H, Cui Y, Xu X, Zhang H, Lu G, Shi J, Liu W, Chen S, Wang X (2018) High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. J Mater Sci 53:6763–6773. https://doi.org/10.1007/s10853-017-1982-9

    Article  CAS  Google Scholar 

  30. Gao X, Xing W, Zhou J, Wang G, Zhuo S, Liu Z, Xue Q, Yan Z (2014) Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim Acta 133:459–466

    Article  CAS  Google Scholar 

  31. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983

    Article  CAS  Google Scholar 

  32. Wu M, Li P, Li Y, Liu J, Wang Y (2015) Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Adv 5:16575–16581

    Article  CAS  Google Scholar 

  33. Zhang Z, Wang K, Atkinson JD, Yan X, Li X, Rood MJ, Yan Z (2012) Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. J Hazardous Mater 229–230:183–191

    Article  Google Scholar 

  34. Ren M, Jia Z, Tian Z, López D, Cai J, Titirici MM, Jorge AB (2018) High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem. https://doi.org/10.1002/celc.201800603

    Article  Google Scholar 

  35. Karthikeyan K, Amaresh S, Lee SN, Sun X, Aravindan V, Lee YG, Lee YS (2014) Construction of high-energy-density supercapacitors from pine-cone-derived high- surface-area carbons. Chemsuschem 7:1435–1442

    Article  CAS  Google Scholar 

  36. Dou S, Tao L, Huo J, Wang S, Dai L (2016) Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ Sci 9:1320–1326

    Article  CAS  Google Scholar 

  37. Guo N, Li M, Wang Y, Sun X, Wang F, Yang R (2016) N-Doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH3 for high performance supercapacitors. RSC Adv 6:101372–101379

    Article  CAS  Google Scholar 

  38. Yan D, Yu C, Zhang X, Qin W, Lu T, Hu B, Li H, Pan L (2016) Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim Acta 191:385–391

    Article  CAS  Google Scholar 

  39. Zhu D, Li L, Cai J, Jiang M, Qi J, Zhao X (2014) Nitrogen-doped porous carbons from bipyridine-based metal-organic frameworks: electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation. Carbon 79:544–553

    Article  CAS  Google Scholar 

  40. Ferrero GA, Fuertes AB, Sevilla M, Titirici MM (2016) Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon 106:179–187

    Article  CAS  Google Scholar 

  41. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    Article  CAS  Google Scholar 

  42. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  Google Scholar 

  43. Yuan B, Wu X, Chen Y, Huang J, Luo H, Deng S (2013) Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. Environ Sci Technol 47:5474–5480

    Article  CAS  Google Scholar 

  44. Liu T, Liu E, Ding R, Luo Z, Hu T, Li Z (2015) Highly graphitic clew-like nanocarbons for supercapacitors. ChemElectroChem 2:852–858

    Article  CAS  Google Scholar 

  45. Sun H, Cao L, Lu L (2012) Bacteria promoted hierarchical carbon materials for high-performance supercapacitor. Energy Environ Sci 5:6206–6213

    Article  CAS  Google Scholar 

  46. Lu J, Bo X, Wang H, Guo L (2013) Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta 108:10–16

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21506184), China Scholarship Council (201708430093), PhD Startup of XTU (15QDZ13), and Hunan 2011 Collaborative Innovation Center of Chemical Engineering with Environmental Benignity and Effective Resource Utilization. Dr. Cai also thanks Prof. Maria-Magdalena Titirici worked at Queen Mary University of London for her help on the measurements and discussions during the one-year academic visiting stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Cai.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Zhang, T., Wang, Y. et al. A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO2 capture and electrochemical applications. J Mater Sci 54, 1606–1615 (2019). https://doi.org/10.1007/s10853-018-2927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2927-7

Keywords

Navigation