Skip to main content
Log in

Size and shape effect on the photocatalytic efficiency of TiO2 brookite

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thanks to aqueous sol–gel chemistry, it is now possible to prepare several phase pure TiO2 brookite colloidal systems that significantly differ on nanoparticles size and shape. This TiO2 polymorph is more difficult to be obtained as phase pure material than anatase or rutile. Here we have prepared a set of four different sol–gel brookite syntheses with particles size ranging from 10 to 500 nm and significantly different morphologies as demonstrated by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We have studied their photocatalytic activities in aqueous solution on phenol and formic acid. The brookite sample with higher specific surface displays better activity for both pollutants abatement than anatase and rutile reference samples and very close to the TiO2 P25 commercial reference. Additional experimental characterization of photogenerated charge carriers and their lifetime is performed using time-resolved microwave conductivity. We could then explain why another efficient brookite material is able to compensate a significantly lower specific surface with a higher photon conversion rate. This study involving a broad set of pure phase brookite samples brings back that phase into the TiO2 polymorphs race for light-enhanced applications. It confirms that size/shape–activity correlation already observed for the anatase polymorph is also valid for the brookite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Google Scholar 

  3. Bonhôte P, Moser J-E, Humphry-Baker R et al (1999) Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads. J Am Chem Soc 121:1324–1336

    Article  Google Scholar 

  4. Lin H-M, Keng C-H, Tung C-Y (1997) Gas-sensing properties of nanocrystalline TiO2. Nanostruct Mater 9:747–750

    Article  CAS  Google Scholar 

  5. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  6. Baudrin E, Cassaignon S, Koesch M, Jolivet JP, Dupont L, Tarascon JM (2007) Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem Commun 9:337–342

    Article  CAS  Google Scholar 

  7. Magne C, Cassaignon S, Lancel G, Pauporte T (2011) Brookite TiO(2) nanoparticle films for dye-sensitized solar cells. ChemPhysChem 12:2461–2467

    Article  CAS  Google Scholar 

  8. Reisch M (2001) Paints and coatings. Chem Eng News 79:23–28

    Article  Google Scholar 

  9. Henderson MA (2011) A surface science perspective on TiO(2) photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  10. Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the Least Known TiO2 photocatalyst. Catalysts 3:36–73

    Article  Google Scholar 

  11. Di Paola A, Bellardita M, Palmisano L, Barbierikova Z, Brezova V (2014) Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders, J. Photochem Photobiol A 273:59–67

    Article  Google Scholar 

  12. Le Bahers T, Rérat M, Sautet P (2014) Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. J Phys Chem C 118:5997–6008

    Article  CAS  Google Scholar 

  13. Dou M, Persson C (2013) Comparative study of rutile and anatase SnO2 and TiO2: band-edge structures, dielectric functions, and polaron effects. J Appl Phys 113:083703

    Article  Google Scholar 

  14. Ozawa K, Emori M, Yamamoto S et al (2014) Electron-hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending. J Phys Chem Lett 5:1953–1957

    Article  CAS  Google Scholar 

  15. Mino L, Spoto G, Bordiga S, Zecchina A (2012) Particles morphology and surface properties as investigated by HRTEM, FTIR, and periodic DFT calculations: from pyrogenic TiO2 (P25) to nanoanatase. J Phys Chem C 116:17008–17018

    Article  CAS  Google Scholar 

  16. Odling G, Robertson N (2015) Why is anatase a better photocatalyst than rutile? The importance of free hydroxyl radicals. ChemSusChem 8:1838–1840

    Article  CAS  Google Scholar 

  17. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68:1–11

    Article  Google Scholar 

  18. Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TIO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133:7197–7204

    Article  CAS  Google Scholar 

  19. Liu S, Yu J, Jaroniec M (2011) Anatase TiO2 with dominant high-energy 001 Facets: synthesis, properties, and applications. Chem Mater 23:4085–4093

    Article  CAS  Google Scholar 

  20. Ohno Y, Tomita K, Komatsubara Y et al (2011) Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst Growth Des 11:4831–4836

    Article  CAS  Google Scholar 

  21. Lin H, Li L, Zhao M et al (2012) Synthesis of high-quality brookite TiO2 Single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134:8328–8331

    Article  CAS  Google Scholar 

  22. Zhao M, Xu H, Chen H et al (2015) Photocatalytic reactivity of 121 and 211 facets of brookite TiO2 crystals. J Mater Chem A 3:2331–2337

    Article  CAS  Google Scholar 

  23. Cargnello M, Montini T, Smolin SY et al (2016) Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc Natl Acad Sci USA 113:3966–3971

    Article  CAS  Google Scholar 

  24. Pourjafari D, Reyes-Coronado D, Vega-Poot A et al (2018) Brookite-based dye-sensitized solar cells: influence of morphology and surface chemistry on cell performance. J Phys Chem C 122:14277–14288

    Article  CAS  Google Scholar 

  25. Choi M, Lim J, Baek M, Choi W, Kim W, Yong K (2017) Investigating the unrevealed photocatalytic activity and stability of nanostructured brookite TiO2 film as an environmental photocatalyst. ACS Appl Mater Interfaces 9:16252–16260

    Article  CAS  Google Scholar 

  26. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater 22:2050–2060

    Article  CAS  Google Scholar 

  27. Ismail AA, Kandiel TA, Bahnemann DW (2010) Novel (and better?) titania-based photocatalysts: brookite nanorods and mesoporous structures. J Photochem. Photobiol A 216:183–193

    Article  Google Scholar 

  28. Kobayashi M, Tomita K, Petrykin V et al (2007) Hydrothermal synthesis of nanosized titania photocatalysts using novel water-soluble titanium complexes. Solid State Phenom 124–126:723–726

    Article  Google Scholar 

  29. Stengl V, Bakardjieva S, Murafa N, Subrt J, Mest’ankova H, Jirkovsky J (2007) Preparation, characterization and photocatalytic activity of optically transparent titanium dioxide particles. Mater Chem Phys 105:38–46

    Article  CAS  Google Scholar 

  30. Zhao B, Chen F, Huang Q, Zhang J (2009) Brookite TiO2 nanoflowers. Chem Commun 34:5115–5117

    Article  Google Scholar 

  31. Vequizo JJM, Matsunaga H, Ishiku T, Kamimura S, Ohno T, Yamakata A (2017) Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TIO2 powders. ACS Catal 7:2644–2651

    Article  CAS  Google Scholar 

  32. Monai M, Montini T, Fornasiero P (2017) Brookite: nothing new under the sun? Catalysts 7:304

    Article  Google Scholar 

  33. Yang Z, Wang B, Cui H, An H, Pan Y, Zhai J (2015) Synthesis of crystal-controlled TiO2 nanorods by a hydrothermal method: rutile and brookite as highly active photocatalysts. J Phys Chem C 119:16905–16912

    Article  CAS  Google Scholar 

  34. Montoya JF, Velasquez JA, Salvador P (2009) The direct-indirect kinetic model in photocatalysis: a reanalysis of phenol and formic acid degradation rate dependence on photon flow and concentration in TiO2 aqueous dispersions. Appl Catal B 88:50–58

    Article  CAS  Google Scholar 

  35. Turki A, Guillard C, Dappozze F, Ksibi Z, Berhault G, Kochkar H (2015) Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms. Appl Catal B 163:404–414

    Article  Google Scholar 

  36. Turki A, Guillard C, Dappozze F, Berhault G, Ksibi Z, Kochkar H (2014) Design of TiO2 nanomaterials for the photodegradation of formic acid—adsorption isotherms and kinetics study. J Photochem Photobiol 279:8–16

    Article  CAS  Google Scholar 

  37. Quang Duc T, Thi Hang L, Huu Thu H (2017) Amino acid-assisted controlling the shapes of rutile, brookite for enhanced photocatalytic CO2 reduction. CrystEngComm 19:4519–4527

    Article  Google Scholar 

  38. Pottier A, Chanéac C, Tronc E, Mazerolles L, Jolivet J-P (2001) Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 11:1116–1121

    Article  CAS  Google Scholar 

  39. Kakihana M, Kobayashi M, Tomita K, Petrykin V (2010) Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull Chem Soc Jpn 83:1285–1308

    Article  CAS  Google Scholar 

  40. Nagase T, Ebina T, Iwasaki T, Hayashi K, Onodera Y, Chatterjee M (1999) Hydrothermal synthesis of brookite. Chem Lett 28:911–912

    Article  Google Scholar 

  41. Pottier A, Chanéac C, Tronc E, Mazerolles L, Jolivet J-P (2001) Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 11:1116–1121

    Article  CAS  Google Scholar 

  42. Perego C, Clemençon I, Rebours B, et al (2009) Thermal stability of brookite—TiO2 nanoparticles with controlled size and shape: in situ studies by XRD. In: Mater. Res. Soc. Symp. Proc. 1146: NN04-02

  43. Durupthy O, Bill J, Aldinger F (2007) Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Cryst Growth Des 7:2696–2704

    Article  CAS  Google Scholar 

  44. Pigeot-Rémy S, Dufour F, Herissan A et al (2017) Bipyramidal anatase TiO2 nanoparticles, a highly efficient photocatalyst? Towards a better understanding of the reactivity. Appl Catal B 203:324–334

    Article  Google Scholar 

  45. Emilio CA, Litter MI, Kunst M, Bouchard M, Colbeau-justin C (2006) Phenol photodegradation on platinized-TiO 2 photocatalysts related to charge-carrier dynamics. Langmuir 22:4943–4950

    Article  Google Scholar 

  46. Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J Raman Spectrosc 26:57–62

    Article  CAS  Google Scholar 

  47. Tran HTT, Kosslick H, Ibad MF et al (2016) Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Appl Catal B 200:647–658

    Google Scholar 

  48. Lopez-Munoz MJ, Revilla A, Alcalde G (2015) Brookite TiO2-based materials: synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions. Catal Today 240:138–145

    Article  CAS  Google Scholar 

  49. Deiana C, Fois E, Coluccia S, Martra G (2010) Surface structure of TiO2 P25 nanoparticles: infrared study of hydroxy groups on coordinative defect sites. J Phys Chem C 114:21531–21538

    Article  CAS  Google Scholar 

  50. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  51. Kroeze JE, Savenije TJ, Warman JM (2004) Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO2. J Am Chem Soc 126:7608–7618

    Article  CAS  Google Scholar 

  52. Nakajima S, Katoh R (2015) Time-resolved microwave conductivity study of charge carrier dynamics in commercially available TiO2 photocatalysts. J Mater Chem A 3:15466–15472

    Article  CAS  Google Scholar 

  53. Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004) Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B 54:51–58

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J.-M. Krafft (LRS, UPMC, France) for its precious help in Raman spectra acquisition and S. Casale (LRS, UPMC, France) for the HRTEM analyses. Funding: This work was supported by the French Agence Nationale de la Recherche (ANR) through the PhotoNorm project.

Funding

This study was funded by the Agence 678 Nationale de la Recherche (ANR Photonorm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Durupthy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigeot-Rémy, S., Gregori, D., Hazime, R. et al. Size and shape effect on the photocatalytic efficiency of TiO2 brookite. J Mater Sci 54, 1213–1225 (2019). https://doi.org/10.1007/s10853-018-2924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2924-x

Keywords

Navigation