Skip to main content
Log in

Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosize Sr-hexaferrite particles (SrM) were synthesized via a citrate-based sol–gel route, and the details of the calcination reaction conditions were investigated. Thermal decomposition of a citrate precursor proceeds in a two-step process: at low temperature T1 the precursor decomposes into maghemite and Sr carbonate, and transforms into hexaferrite upon a second treatment at another temperature T2. A synthesis protocol with T1 = 350 °C and T2 = 650 °C gives hexaferrite particles with size of below 100 nm. A systematic study of reaction conditions revealed that the formation of a hematite-free decomposition product at T1 is the prerequisite for the synthesis of single-phase hexaferrite nanosize particles. The hexaferrite particles exhibit a saturation magnetization at room temperature of Ms = 58 emu/g with a coercivity of Hc = 3.7 kOe. Further fine-milling of the as-synthesized ferrite in aqueous media gives particles below 50 nm in size with Ms = 48–54 emu/g and Hc = 4.2–5.5 kOe under preservation of the M-type structure. The thermal stability of SrM particles under reducing conditions at moderate temperature was also studied. Annealing of ferrite particles in Ar/5%H2 atmosphere at 350 °C results in magnetite formation; iron is formed at T ≥ 450 °C after complete hexaferrite decomposition; hence, SrM@Fe nanocomposites are not accessible via particle reduction of SrM particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Smith J, Wijn HPJ (1959) Ferrites Philips Technische Bibliothek. Centrex, Eindhoven

    Google Scholar 

  2. Kojima H (1982) Hexagonal Ferrites. In: Wohlfarth EP (ed) Ferromagnetic materials, vol 3. North-Holland Publ, Amsterdam, pp 305–391

    Google Scholar 

  3. Pullar R (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progr Mater Sci 57:1191–1334

    Article  CAS  Google Scholar 

  4. Went JJ, Rathenau GW, Gorter EW, van Oosterhout GW (1952) Ferroxdure, eine Gruppe neuer Werkstoffe für Dauermagnete. Philips Technische Rundschau 13:361–376 (in German)

    Google Scholar 

  5. Kneller EF, Hawig R (1991) The exchange spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 27:3588–3600

    Article  CAS  Google Scholar 

  6. Poudyal N, Liu JP (2013) Advances in nanostructured permanent magnets research. J Phys D Appl Phys 46:043001

    Article  Google Scholar 

  7. Roy D, Shivakumara C, Anil Kumar PS (2009) Observation of the exchange spring behaviour in hard-soft ferrite nanocomposites. J Magn Magn Mater 321:L11–L14

    Article  CAS  Google Scholar 

  8. Jenus P, Topole M, Mc Guiness P, Granados-Miralles C, Stingaciu M, Christensen M, Kobe S, Rozman KZ (2016) Ferrite-based exchange coupled hard-soft magnets fabricated by spark plasma sintering. J Am Ceram Soc 99:1927–1934

    Article  CAS  Google Scholar 

  9. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, Hoboken

    Google Scholar 

  10. Rezlescu L, Rezlescu E, Popa PD, Rezlescu N (1999) Fine barium hexaferrite powder prepared by the crystallisation of glass. J Magn Magn Mater 193:288–290

    Article  CAS  Google Scholar 

  11. Gadalla AM, Hennicke HW (1975) Formation of barium hexaferrite. J Magn Magn Mater 1:144–152

    Article  CAS  Google Scholar 

  12. Haneda K, Kojima H (1974) Effect of milling on the intrinsic coercivity of barium ferrite powders. J Am Ceram Soc 57:68–71

    Article  CAS  Google Scholar 

  13. Mohsen Q (2010) Barium hexaferrite synthesis by oxalate precursor route. J Alloys Compd 500:125–128

    Article  CAS  Google Scholar 

  14. Prashkova EV, Solovyova ED, Kolodiazhnyi TV, Ivanitskii VP, Belous AG (2014) Effect of heat treatment on the phase composition, structure and magnetic properties of M-type barium hexaferrite. J Magn Magn Mater 368:1–7

    Article  Google Scholar 

  15. Cabanas MV, Gonzales-Calbet JM, Labeau M, Mollard P, Pernet M, Vallet-Regi M (1992) Evolution of the microstructure and its influence on the magnetic properties of aerosol synthesized BaFe12O19 particles. J Solid State Chem 101:265–274

    Article  CAS  Google Scholar 

  16. Markovec D, Primc D, Sturm S, Kodre A, Hanzel A, Drofenik M (2012) Structural properties of ultrafine Ba-hexaferrite nanoparticles. J Solid State Chem 196:63–71

    Article  Google Scholar 

  17. Sankaranarayanan VK, Pankhurst QA, Dickson DPE, Johnson CE (1993) Ultrafine particles of barium ferrite from a citrate precursor. J Magn Magn Mater 120:73–75

    Article  CAS  Google Scholar 

  18. Vijayalakshmi A, Gajbhiye NS (1998) Magnetic properties of single-domain SrFe12O19 particles synthesized by citrate precursor technique. J Appl Phys 83:400–406

    Article  CAS  Google Scholar 

  19. Yu HF, Liu PC (2006) Effects of pH and calcination temperatures on the formation of citrate derived hexagonal barium ferrite particles. J Alloys Compd 416:222–227

    Article  CAS  Google Scholar 

  20. Sapoletova NA, Kushnir SE, Li YH, An SY, Seo JW (2015) Plate-like SrFe12O19 particles prepared by modified sol–gel method. J Magn Magn Mater 389:101–105

    Article  CAS  Google Scholar 

  21. Zhong W, Ding W, Jiang Y, Zhang N, Du Y, Yan Q (1997) Preparation and magnetic properties of barium hexaferrite nanoparticles produced by the citrate process. J Am Ceram Soc 80:3258–3262

    Article  CAS  Google Scholar 

  22. Alamolhoda S, Seyyed Ebrahimi SA, Badiei A (2006) Optimization of the Fe/Sr ratio in processing of ultrafine strontium hexaferrite powders by a sol–gel autocombustion method. Phys Met Metallogr 102:S71–S73

    Article  Google Scholar 

  23. Zhang J, Rong LX, Dong BZ (2003) SAXS study on the microstructure of Fe2O3 nanocrystal. Mater Sci Eng A351:224–227

    Article  CAS  Google Scholar 

  24. Mürbe J, Rechtenbach A, Töpfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:426–433

    Article  Google Scholar 

  25. Huang J, Zhuang H, Li W (2003) Synthesis and characterization of nanocrystalline BaFe12O19 powders by low temperature combustion. Mater Res Bull 38:149–159

    Article  CAS  Google Scholar 

  26. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  27. Bellotto M, Busca G, Cristiani C, Groppi G (1995) FT-IR skeletal powder spectra of Ba-β-aluminas with compositions BaAl9O14.5, BaAl12O19 and BaAl14O22 and of Ba-Ferrite, BaFe12O19. J Solid State Chem 117:8–15

    Article  CAS  Google Scholar 

  28. Kaczmarek WA, Ninham BW (1995) Surfactant-assisted ball milling of BaFe12O19 ferrite dispersion. Mater Chem Phys 40:21–29

    Article  CAS  Google Scholar 

  29. Primc D, Makovec D (2015) Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale 7:2688–2697

    Article  CAS  Google Scholar 

  30. Pfeiffer H, Schüppel W (1990) Investigation of magnetic properties of barium ferrite powders by remanence curves. Phys Status Solidi (a) 119:259–269

    Article  CAS  Google Scholar 

  31. Zi ZF, Sun YP, Zhu XP, Yang ZR, Dai JM, Song WH (2008) Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J Magn Magn Mater 320:2746–2751

    Article  CAS  Google Scholar 

  32. Quesada A, Rubio-Marcos F, Marco JF, Mompean FJ, Garcia-Hernandez M, Fernandez JF (2014) On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites. Appl Phys Lett 105:202405

    Article  Google Scholar 

  33. Kitahata SI (1997) Magnetic properties and crystal structure of composite Ba-ferrite particles containing α-Fe. Jpn J Appl Phys 36:676–683

    Article  CAS  Google Scholar 

  34. Hessien MM, Radwan M, Rashad MM (2007) Enhancement of magnetic properties for barium hexaferrite prepared through ceramic route. J Anal Appl Pyrolysis 78:282–287

    Article  CAS  Google Scholar 

  35. Pal M, Bid S, Pradham SK, Nath BK, Das D, Chakravorty D (2004) Synthesis of nanocomposites comprising iron and barium hexaferrites. J Magn Magn Mater 269:42–47

    Article  CAS  Google Scholar 

  36. Li J, Gür TM, Sinclair R, Rosenblum SS, Hayashi H (1994) Thermochemical stability of BaFe12O19 and BaFe2O4 and phase relations in the Ba–Fe–O ternary system. J Mater Res 9:1499–1512

    Article  CAS  Google Scholar 

  37. Rakshit SK, Parida SC, Singh Z, Prasad R, Venugopal V (2004) Thermodynamic properties of ternary oxides in the system Ba–Fe–O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes. J Solid State Chem 177:1146–1156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Federal Ministry of Research and Education, Germany, through Grant 03X3582D. We thank Dr. H.-J. Hempel for TEM microscopy (University Jena, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Töpfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohlender, C., Kahnes, M., Müller, R. et al. Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process. J Mater Sci 54, 1136–1146 (2019). https://doi.org/10.1007/s10853-018-2916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2916-x

Keywords

Navigation