Skip to main content
Log in

Helium bubble evolution and deformation of single crystal α-Fe

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To investigate irradiation-induced embrittlement, molecular dynamics (MD) simulations were applied to explore helium (He) bubble evolution and deformation of single crystal α-Fe. The results show, at 800 K, formation kinetics of He bubbles are considered for two diffusion regimes due to He concentration: One is long-range diffusion of He atoms (< 0.1 at.%), and the other is short-range diffusion (> 0.1 at.%). In long-range diffusion, dislocations play a significant role on the size and spatial distributions of He clusters. He atoms are easier to segregate on dislocations, and therefore, average size of He clusters is increasing with increasing He concentration. In short-range diffusion, the influence of dislocations is rather weaker. He atoms tend to form He clusters by self-trapping, thus leading to decreasing average size. But, total number is monotonically increasing within the entire range (0–1 at.%). In tensile process, with increasing He concentration, yield stress is monotonically decreasing but plasticity is firstly increasing then decreasing. Especially, at 0.05 and 0.1 at.%, larger He bubbles with discrete distribution enhance deformability and promote dislocation multiply. In addition, for different He distributions, two growth mechanisms of He bubbles can be summarized: One is He bubble–He bubble coalescence, and the other is He bubble–void coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ullmaier H (1984) The influence of helium on the bulk properties of fusion reactor structural materials. Nucl Fusion 24(8):1039

    Article  CAS  Google Scholar 

  2. Shi J, Peng L, Ye M, Gao F (2017) Molecular dynamics study: effects of He bubble and Cr precipitate on tensile deformation of grain boundaries in α-Fe. IEEE Trans Plasma Sci 45(2):289–293

    Article  CAS  Google Scholar 

  3. Kurtz RJ, Alamo A, Lucon E et al (2009) Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J Nucl Mater 386:411–417

    Article  Google Scholar 

  4. Lu Q, van der Zwaag S, Xu W (2017) Charting the ‘composition–strength’ space for novel austenitic, martensitic and ferritic creep resistant steels. J Mater Sci Technol 33:1577–1581

    Article  Google Scholar 

  5. Jitsukawa S, Kimura A, Kohyama A et al (2004) Recent results of the reduced activation ferritic/martensitic steel development. J Nucl Mater 329:39–46

    Article  Google Scholar 

  6. Zhou X, Liu C, Yu L, Liu YC, Li HJ (2015) Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review. J Mater Sci Technol 31:235–242

    Article  Google Scholar 

  7. Yamamoto T, Odette GR, Miao P, Edwards DJ, Kurtz RJ (2009) Helium effects on microstructural evolution in tempered martensitic steels: in situ helium implanter studies in HFIR. J Nucl Mater 386:338–341

    Article  Google Scholar 

  8. Stewart D, Osetskiy Y, Stoller R (2011) Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron. J Nucl Mater 417:1110–1114

    Article  CAS  Google Scholar 

  9. Yang L, Gao F, Kurtz RJ, Zu XT, Peng SM, Long XG, Zhou XS (2015) Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: a molecular dynamics study. Acta Mater 97:86–93

    Article  CAS  Google Scholar 

  10. Chen WY, Miao Y, Gan J, Okuniewski MA, Maloy SA, Stubbins JF (2016) Neutron irradiation effects in Fe and Fe–Cr at 300 °C. Acta Mater 111:407–416

    Article  CAS  Google Scholar 

  11. Kacher J, Liu GS, Robertson IM (2012) In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels. Micron 43:1099–1107

    Article  CAS  Google Scholar 

  12. Robertson C, Gururaj K (2011) Plastic deformation of ferritic grains in presence of ODS particles and irradiation-induced defect clusters: a 3D dislocation dynamics simulation study. J Nucl Mater 415:167–178

    Article  CAS  Google Scholar 

  13. Terentyev D, Bonny G, Domain C, Monnet G, Malerba L (2013) Mechanisms of radiation strengthening in Fe–Cr alloys as revealed by atomistic studies. J Nucl Mater 442:470–485

    Article  CAS  Google Scholar 

  14. Terentyev D, Osetsky YN, Bacon DJ (2010) Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal. Scripta Mater 62:697–700

    Article  CAS  Google Scholar 

  15. Nomoto A, Soneda N, Takahashi A, Ishino S (2005) Interaction analysis between edge dislocation and self interstitial type dislocation loop in BCC iron using molecular dynamics. Mater Trans 46:463–468

    Article  CAS  Google Scholar 

  16. Xu Q, Yamasaki H, Sato K, Yoshiie T (2011) Can helium actually improve the mechanical properties of a metal? Philos Mag Lett 91:724–730

    Article  CAS  Google Scholar 

  17. Xu Q, Yamasaki H, Sugiura Y, Sato K, Yoshiie T (2013) Effects of interactions between dislocations and/or vacancies and He atoms on mechanical property changes in Ni. Mater Sci Eng, A 586:231–235

    Article  CAS  Google Scholar 

  18. Xu Q, Sugiura Y, Pan XQ, Sato K, Yoshiie T (2014) Effects of dislocation-trapped helium on mechanical properties of Fe. Mater Sci Eng, A 612:41–45

    Article  CAS  Google Scholar 

  19. Wei YP, Liu PP, Zhu YM, Wang ZQ, Wan FR, Zhan Q (2016) Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel. J Alloys Compd 676:481–488

    Article  CAS  Google Scholar 

  20. Ge H, Peng L, Dai Y, Huang QY, Ye MY (2016) Tensile properties of CLAM steel irradiated up to 20.1 dPa in STIP-V. J Nucl Mater 468:240–245

    Article  CAS  Google Scholar 

  21. Galindo-Nava EI, Basha BIY, Rivera-Díaz-del-Castillo PEJ (2017) Hydrogen transport in metals: integration of permeation, thermal desorption and degassing. J Mater Sci Technol 33(12):1433–1447

    Article  Google Scholar 

  22. Ding MS, Du JP, Wan L et al (2016) Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper. Nano Lett 16(7):4118–4124

    Article  CAS  Google Scholar 

  23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  24. Martínez E, Schwen D, Caro A (2015) Helium segregation to screw and edge dislocations in α-iron and their yield strength. Acta Mater 84:208–214

    Article  Google Scholar 

  25. Gai X, Lazauskas T, Smith R, Kenny SD (2015) Helium bubbles in bcc Fe and their interactions with irradiation. J Nucl Mater 462:382–390

    Article  CAS  Google Scholar 

  26. Stukowski A, Albe K (2010) Dislocation detection algorithm for atomistic simulations. Model Simul Mater Sci Eng 18:025016

    Article  Google Scholar 

  27. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  28. Yang L, Deng HQ, Gao F et al (2013) Atomistic studies of nucleation of He clusters and bubbles in bcc iron. Nucl Instrum Methods B 303:68–71

    Article  CAS  Google Scholar 

  29. Chen J, Jung P, Hoffelner W, Ullmaier H (2008) Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater 56:250–258

    Article  CAS  Google Scholar 

  30. Prokhodtseva A, Décamps B, Schäublin R (2013) Comparison between bulk and thin foil ion irradiation of ultra high purity Fe. J Nucl Mater 442:S786–S789

    Article  CAS  Google Scholar 

  31. Zhang CH, Chen KQ, Wang YS, Sun JG, Shen DY (1997) Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J Nucl Mater 245(2–3):210–216

    Article  CAS  Google Scholar 

  32. Li XC, Shu X, Tao P et al (2014) Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten. J Nucl Mater 455:544–548

    Article  CAS  Google Scholar 

  33. Li Q, Parish CM, Powers KA, Miller MK (2014) Helium solubility and bubble formation in a nanostructured ferritic alloy. J Nucl Mater 445(1–3):165–174

    Article  CAS  Google Scholar 

  34. Wang P, Chou W, Nie AM, Huang Y, Yao HM, Wang HT (2011) Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires. J Appl Phys 110(9):093521

    Article  Google Scholar 

  35. Wang J, Huang Y, Li C, Yu LM, Li HJ, Liu YC (2017) Damage micromechanics properties of bicrystalline α-Fe metals with two-voids. Phys B 521:275–280

    Article  CAS  Google Scholar 

  36. Wolfer WG (1989) Dislocation loop punching in bubble arrays. Philos Mag A 59(1):87–103

    Article  Google Scholar 

  37. Schaeublin R, Gelles D, Victoria M (2002) Microstructure of irradiated ferritic/martensitic steels in relation to mechanical properties. J Nucl Mater 307:197–202

    Article  Google Scholar 

  38. Marian J, Wirth BD, Schäublin R, Perlado JM, de la Rubia TD (2002) <100>-Loop characterization in α-Fe: comparison between experiments and modeling. J Nucl Mater 307:871–875

    Article  Google Scholar 

  39. Little EA, Eyre BL (1973) The geometry of dislocation loops generated in α-iron by 1 MeV electron irradiation at 550 °C. J Microsc 97(1–2):107–111

    Article  Google Scholar 

  40. Willaime F, Fu CC, Marinica MC, Torre JD (2005) Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations. Nucl Instrum Methods B 228(1–4):92–99

    Article  CAS  Google Scholar 

  41. Christian JW, Vitek V (1970) Dislocations and stacking faults. Rep Prog Phys 33(1):307

    Article  Google Scholar 

  42. Marian J, Wirth BD, Perlado JM (2002) Mechanism of formation and growth of <100> interstitial loops in ferritic materials. Phys Rev Lett 88(25):255507

    Article  Google Scholar 

  43. Zhang X, Li M, Park JS, Kenesei P, Almer J, Xu C, Stubbins JF (2017) In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe–9%Cr alloy. Acta Mater 126:67–76

    Article  CAS  Google Scholar 

  44. Ono K, Miyamoto M, Arakawa K, Matsumoto S, Kudo F (2014) Effects of precipitated helium, deuterium or alloy elements on glissile motion of dislocation loops in Fe–9Cr–2 W ferritic alloy. J Nucl Mater 455(1):162–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Granted Nos. 51474156 and U1660201), the National Magnetic Confinement Fusion Energy Research Project (Granted No. 2015GB119001) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongqing Ma or Yongchang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, Z., Liu, C. et al. Helium bubble evolution and deformation of single crystal α-Fe. J Mater Sci 54, 1785–1796 (2019). https://doi.org/10.1007/s10853-018-2915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2915-y

Keywords

Navigation