Skip to main content

Advertisement

Log in

Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrocatalytic hydrogen evolution is the most cost-effective method for producing hydrogen as a large-scale clean energy source. Thus, catalysts of low-cost hydrogen evolution are developing at great speed. FeS2–reduced graphene oxide (RGO) hybrid catalysts are synthesized with the use of abundant and inexpensive component worldwide. The catalyst has satisfactory electrocatalytic performance and excellent stability in 0.5 M H2SO4 solution. The catalyst supported by RGO is the ideal electrocatalyst with satisfactory electrical conductivity with 61 mV dec−1 of the Tafel slope. What is more, the current density changes slightly in 36 h and the catalytic performance is relatively stable at 200 mV overpotential. Therefore, the catalyst supported by RGO has high potential for industrial production due to its simple composition and satisfactory electrocatalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Turner J (2004) Sustainable hydrogen production. Science 305:972–974

    Article  CAS  Google Scholar 

  2. Yang W, Shi W, Chen C, Zhang T, Liu J, Wang Z, Zhou J (2017) Efficiency analysis of a novel electricity and heat co-generation system in the basis of aluminum–water reaction. Int J Hydrogen Energy 42:3598–3604

    Article  CAS  Google Scholar 

  3. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962

    Article  CAS  Google Scholar 

  4. Huang SY, Sodano D, Leonard T (2017) Cobalt-doped iron sulfide as an electrocatalyst for hydrogen evolution. J Electrochem Soc 164:F276–F282

    Article  CAS  Google Scholar 

  5. Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157(11):B1529–B1536

    Article  CAS  Google Scholar 

  6. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed Engl 49:9859–9862

    Article  CAS  Google Scholar 

  7. Xia Z (2016) Hydrogen evolution: guiding principles. Nat Energy 1(10):16155

    Article  Google Scholar 

  8. Wang DY, Gong M, Chou HL, Pan CJ, Chen HA, Wu Y, Lin MC, Guan M, Yang J, Chen CW, Wang YL, Hwang BJ, Chen CC, Dai H (2015) Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc 137:1587–1592

    Article  CAS  Google Scholar 

  9. Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C Nanomater Interfaces 118:21347–21356

    Article  CAS  Google Scholar 

  10. Li H, Du M, Mleczko MJ, Koh AL, Nishi Y, Pop E, Bard AJ, Zheng X (2016) Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J Am Chem Soc 138:5123–5129

    Article  CAS  Google Scholar 

  11. Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS(2) nanodots for hydrogen evolution. ACS Nano 10:2159–2166

    Article  CAS  Google Scholar 

  12. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  Google Scholar 

  13. Kuo TR, Chen WT, Liao HJ, Yang YH, Yen HC, Liao TW, Wen CY, Lee YC, Chen CC, Wang DY (2017) Improving hydrogen evolution activity of earth-abundant cobalt-doped iron pyrite catalysts by surface modification with phosphide. Small 13:1603356

    Article  Google Scholar 

  14. Kou Z, Xi K, Pu Z, Mu S (2017) Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36:374–380

    Article  CAS  Google Scholar 

  15. Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204

    Article  CAS  Google Scholar 

  16. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192

    Article  CAS  Google Scholar 

  17. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed Engl 51:6131–6135

    Article  CAS  Google Scholar 

  18. Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H (2016) Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 138:1414–1419

    Article  CAS  Google Scholar 

  19. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918

    Article  CAS  Google Scholar 

  20. Duan X, Gao Z, Chang J, Wu D, Ma P, He J, Xu F, Gao S, Jiang K (2013) CoS2–graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochim Acta 114:173–179

    Article  CAS  Google Scholar 

  21. Liang D, Caban-Acevedo M, Kaiser NS, Jin S (2014) Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett 14:6754–6760

    Article  CAS  Google Scholar 

  22. Wang DY, Jiang YT, Lin CC, Li SS, Wang YT, Chen CC, Chen CW (2012) Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater 24:3415–3420

    Article  CAS  Google Scholar 

  23. Jasion D, Barforoush JM, Qiao Q, Zhu Y, Ren S, Leonard KC (2015) Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis. ACS Catal 5:6653–6657

    Article  CAS  Google Scholar 

  24. Fu Q, Bao X (2017) Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev 46:1842–1874

    Article  CAS  Google Scholar 

  25. Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648

    Article  Google Scholar 

  26. Zuo Y, Luo J, Cheng M, Zhang K, Dong R (2018) Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J Alloy Compd 744:310–320

    Article  CAS  Google Scholar 

  27. Luo J, Xu Y, Yao W, Jiang C, Xu J (2015) Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos Sci Technol 117:315–321

    Article  CAS  Google Scholar 

  28. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  CAS  Google Scholar 

  29. Xu G-R, Hui J-J, Huang T, Chen Y, Lee J-M (2015) Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J Power Sources 285:393–399

    Article  CAS  Google Scholar 

  30. Wang S, Liao L, Shi Z, Xiao J, Gao Q, Zhang Y, Liu B, Tang Y (2016) Mo2C/reduced-graphene-oxide nanocomposite: an efficient electrocatalyst for the hydrogen evolution reaction. ChemElectroChem 3:2110–2115

    Article  CAS  Google Scholar 

  31. Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166

    Article  CAS  Google Scholar 

  32. Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6:3553–3558

    Article  CAS  Google Scholar 

  33. Chen Y, Xu S, Li Y, Jacob RJ, Kuang Y, Liu B, Wang Y, Pastel G, Salamanca-Riba LG, Zachariah MR, Hu L (2017) FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv Energy Mater 7:1700482

    Article  Google Scholar 

  34. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1. Carbon 42:2929–2937

    CAS  Google Scholar 

  35. Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723

    Article  CAS  Google Scholar 

  36. Li J, Xiao G, Chen C, Li R, Yan D (2013) Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J Mater Chem A 1:1481–1487

    Article  CAS  Google Scholar 

  37. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  38. Wang F, Yang X, Dong B, Yu X, Xue H, Feng L (2018) A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochem Commun 92:33–38

    Article  Google Scholar 

  39. Li F, Zhao X, Mahmood J, Okyay MS, Jung SM, Ahmad I, Kim SJ, Han GF, Park N, Baek JB (2017) Macroporous inverse opal-like MoxC with incorporated mo vacancies for significantly enhanced hydrogen evolution. ACS Nano 11:7527–7533

    Article  CAS  Google Scholar 

  40. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9:931–940

    Article  CAS  Google Scholar 

  41. Huang J-F, Wu Y-C (2018) Making Ag present pt-like activity for hydrogen evolution reaction. ACS Sustain Chem Eng 6:8285–8290

    Article  CAS  Google Scholar 

  42. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA 3rd, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9:2551

    Article  Google Scholar 

  43. Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046

    Article  CAS  Google Scholar 

  44. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  45. Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and rna efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J Phys Chem C 116:9653–9659

    Article  CAS  Google Scholar 

  46. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180

    Article  CAS  Google Scholar 

  47. Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun (Camb) 49:6656–6658

    Article  CAS  Google Scholar 

  48. Di Giovanni C, Wang W-A, Nowak S, Grenèche J-M, Lecoq H, Mouton L, Giraud M, Tard C (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4:681–687

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported from the National Natural Science Foundation of China (21606151, 21504057 and 21707092), Shanghai Excellent Technology Leaders Program (17XD1424900), Shanghai Leading Talent Program (017), Science and Technology Commission of Shanghai Municipality Project (18090503800), Shanghai Natural Science Foundation of Shanghai (17ZR1441700 and 14ZR1440500), Collaborative Innovation Fund of SIT (Project Number XTCX2015-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jibo Jiang or Hualin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhu, L., Chen, H. et al. Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution. J Mater Sci 54, 1422–1433 (2019). https://doi.org/10.1007/s10853-018-2913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2913-0

Keywords

Navigation