Skip to main content
Log in

Improved piezoelectric and strain performance of Na2B4O7-doped (Li,K,Na)NbO3 lead-free piezoceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A polymorphic phase transition effect has been employed to regulate the piezoelectric property of lead-free (K,Na)NbO3-based materials, which intrinsically bear the disadvantage of the evident temperature sensitivity. In this research, Li0.04[(K0.49Na0.51)]0.96NbO3xNa2B4O7 piezoceramics were prepared through a conventional solid-state reaction. A piezoelectric coefficient d33 of about 285 pC/N and a unipolar strain of 0.14%@5 kV/mm were achieved in the ceramics with x = 0.5%. These improved properties can be ascribed to the coexistence of orthorhombic and tetragonal phase structure around room temperature. Besides, the field-induced unipolar strain varied less than 15% in the temperature region from room temperature to 180 °C. The stability of strain property could be rationally interpreted by a quantitative approach of electrostrictive coupling to the polarization amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New York

    Book  Google Scholar 

  2. Zhao YJ, Zhao YZ, Huang RX, Liu RZ, Zhou HP (2011) Effect of sintering temperature on microstructure and electric properties of 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 with copper oxide sintering aid. J Am Ceram Soc 94(3):656–659

    Article  CAS  Google Scholar 

  3. Zhao YJ, Zhao YZ, Huang RX, Liu RZ, Zhou HP (2011) Microstructure and piezoelectric properties of CuO-doped 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 lead-free ceramics. J Eur Ceram Soc 31(11):1939–1944

    Article  CAS  Google Scholar 

  4. Zhao YJ, Zhao YZ, Zhang XW, Huang RX, Liu RZ, Zhou HP (2012) The effect of sintering and poling processing on the phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free ceramics. Scr Mater 66(2):97–100

    Article  CAS  Google Scholar 

  5. Zhao YJ, Huang RX, Liu RZ, Wang XL, Zhou HP (2013) Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na, K)NbO3 ceramics by optimizing sintering temperature. Ceram Int 39(1):425–429

    Article  CAS  Google Scholar 

  6. Zhao YJ, Zhao YZ, Zhang XW, Huang RX, Liu RZ, Zhou HP (2012) Poling field dependence of ferroelectric domains in tetragonal KNNLN ceramics. Ceram Int 38(7):6067–6070

    Article  CAS  Google Scholar 

  7. Zhao YJ, Zhao YZ, Zhang XW, Huang RX, Liu RZ, Zhou HP (2012) Phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free piezoelectric ceramics. Mater Lett 75:146–148

    Article  CAS  Google Scholar 

  8. Dai YJ, Zhang XW, Zhou GY (2007) Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl Phys Lett 90(26):262903

    Article  Google Scholar 

  9. Zhao YJ, Ge YY, Yuan XY, Zhao YZ, Zhou HP, Li JB, Jin HB (2016) Effect of phase structure changes on the lead-free Er3+-doped (K0.52Na0.48)1−xLixNbO3 piezoelectric ceramics. J Alloys Compd 680:467–472

    Article  CAS  Google Scholar 

  10. Zheng T, Wu JG, Xiao DQ, Zhu JG (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    Article  CAS  Google Scholar 

  11. Wu JG, Xiao DQ, Zhu J (2015) G Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595

    Article  CAS  Google Scholar 

  12. Xu KX, Li J, Lv X, Wu JG, Zhang XX, Xiao DQ, Zhu JG (2016) Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8523

    Article  CAS  Google Scholar 

  13. Wu B, Wu HJ, Wu JG, Xiao DQ, Zhu JG, Pennycook SJ (2016) Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 138:15459–15464

    Article  CAS  Google Scholar 

  14. Zheng T, Wu HJ, Yuan Y, Lv X, Li Q, Men TL et al (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 10:528–537

    Article  CAS  Google Scholar 

  15. Chen KP, Zhang XW, Fang F, Wang J (2001) Structure and implication of morphotropic phase boundary for Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric ceramics. Ferroelectrics 261(1):155–160

    Article  CAS  Google Scholar 

  16. Zhang XW, Lei C, Chen KP (2005) Ferroelectric 90o domain evaluation in tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. J Am Ceram Soc 88(2):335–338

    Article  CAS  Google Scholar 

  17. Skidmore TA, Comyn TP, Milne SJ (2009) Temperature stability of ([Na0.5K0.5NbO30.93]–[LiTaO30.07]) lead-free piezoelectric ceramics. Appl Phys Lett 94:222902-1–222902-3

    Article  Google Scholar 

  18. Zhang SJ, Xia R, Shrout TR (2007) Modified (K0.5Na0.5)-NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913-1–132913-3

    Google Scholar 

  19. Hollenstein E, Damjanovic D, Setter N (2007) Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J Eur Ceram Soc 27:4093–4097

    Article  CAS  Google Scholar 

  20. Wu JG, Xiao DQ, Wang YY, Wu WJ, Zhang B, Zhu JG (2008) Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04] (Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. J Appl Phys 104:024102-1–024102-4

    Google Scholar 

  21. Zhao YJ, Huang RX, Liu RZ, Zhou HP, Zhao W (2014) Effects of sintering temperature and poling process on Li0.058(Na0.51K0.49)0.942NbO3 piezoceramics. Mater. Research. Bulletin 49:475–479

    CAS  Google Scholar 

  22. Zhao YJ, Zhao YZ, Huang RX, Liu RZ, Zhou HP (2011) Enhanced piezoelectric properties of Fe2O3–2TiO2 codoped Li0.05(Na0.5K0.5)0.95(Nb0.975Sb0.025)O3 lead-free ceramics with uniform microstructure. Mater Chem Phys 131:32–36

    Article  CAS  Google Scholar 

  23. Zhao YJ, Ge YY, Zhang XW, Zhao YZ, Zhou HP, Li JB, Jin HB (2016) Comprehensive investigation of Er2O3 doped (Li, K, Na)NbO3 ceramics rendering potential application in novel multifunctional devices. J Alloys Compd 683:171–177

    Article  CAS  Google Scholar 

  24. Huang RX, Zhao YJ, Zhao YZ, Liu RZ, Zhou HP (2011) Effects of sintering temperature and alkaline elements excess on the structure and electrical properties of (K(0.462)Na(0.48)Li(0.058))(1+x)NbO(3) lead-free piezoelectric ceramics. Curr Appl Phys 11(5):1205–1209

    Article  Google Scholar 

  25. Du HL, Zhou WC, Luo F (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)–TiO3 lead-free ceramics. J Am Ceram Soc 91:2903–2908

    Article  CAS  Google Scholar 

  26. Zhao YJ, Wang LH, Huang RX, Liu RZ, Zhou HP (2013) The correlation between the microstructure and macroscopic properties of (K, Na, Li)(Nb, Ta)O3 ceramic via rare earth oxide doping. Ceram Int 40:2505–2510

    Article  Google Scholar 

  27. Kang Y, Zhao YZ, Huang RX, Zhao YJ, Zhou HP (2011) Effect of changing Na/K ratio on structure and electrical properties of (Na(x)K(y))(Nb(0.885)Sb(0.08))–0.035LiTaO(3) lead-free piezoelectric ceramics. J Am Ceram Soc 94(6):1683–1686

    Article  CAS  Google Scholar 

  28. Zhao YJ, Zhang XW, Huang RX, Chen KP, Wang H, Jin HB, Zhou HP (2016) Enhanced field-induced strain in the textured lead-free ceramic. J Am Ceram Soc 99:3985–3992

    Article  CAS  Google Scholar 

  29. Zhang Y, Li LY, Shen B, Zhai JW (2015) Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. Dalton Trans 44:7797–7802

    Article  CAS  Google Scholar 

  30. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  CAS  Google Scholar 

  31. Uchino K, Nomura S, Cross LE, Newnham RE, Jang SJ (1981) Electrostrictive effect in perovskite and its transducer application. J Mater Sci 16:569–578. https://doi.org/10.1007/BF00552193

    Article  CAS  Google Scholar 

  32. Heywang W, Lubitz K, Wersing W (2008) Piezoelectricity: evolution and future of a technology. Springer, Heidelberg

    Google Scholar 

  33. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102-1–094102-5

    Article  Google Scholar 

  34. Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51602023) and this project is supported by the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, J. & Yan, D. Improved piezoelectric and strain performance of Na2B4O7-doped (Li,K,Na)NbO3 lead-free piezoceramics. J Mater Sci 54, 1126–1135 (2019). https://doi.org/10.1007/s10853-018-2906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2906-z

Keywords

Navigation