Skip to main content
Log in

A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel modified separator was synthesized with an ultraviolet irradiated polypropylene (PP) membrane and acrylonitrile monomers by a solution grafting reaction. It was demonstrated that polyacrylonitrile (PAN) was grafted on the PP separator surface by analyzing the results of FESEM, ATR–FTIR and XPS. The thermostability and wettability of the PAN-grafted PP (PP-g-PAN) separator were enhanced. Then, Li–S batteries were assembled using the modified separators. The cycling and rate capacity performance is improved clearly because of the higher liquid uptake, smaller porous size, better polysulfides absorption effect and interfacial affinity of the grafted separator. The modified separator can hinder the movement of Li2Sx effectively to prevent the shuttle effect of a Li–S battery. Therefore, this efficient method has great potential to be applied to the modification of other kinds of polymer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Huang X (2010) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662

    Article  Google Scholar 

  2. Huang X, Hitt J (2013) Lithium ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168

    Article  Google Scholar 

  3. Fang L-F, Shi J-L, Jiang J-H, Li H, Zhu B-K, Zhu L-P (2014) Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic–organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Adv 4:22501

    Article  CAS  Google Scholar 

  4. Zhang Z, Wang G, Lai Y, Li J, Zhang Z, Chen W (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources 300:157–163

    Article  CAS  Google Scholar 

  5. Song R, Fang R, Wen L, Shi Y, Wang S, Li F (2016) A trilayer separator with dual function for high performance lithium–sulfur batteries. J Power Sources 301:179–186

    Article  CAS  Google Scholar 

  6. Ma G, Wen Z, Jin J, Wu M, Wu X, Zhang J (2014) Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources 267:542–546

    Article  CAS  Google Scholar 

  7. Zuo P, Hua J, He M et al (2017) Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries. J Mater Chem A 5:10936–10945

    Article  CAS  Google Scholar 

  8. Yuan X, Wu L, He X et al (2017) Separator modified with N, S co-doped mesoporous carbon using egg shell as template for high performance lithium–sulfur batteries. Chem Eng J 320:178–188

    Article  CAS  Google Scholar 

  9. Wu H, Huang Y, Xu S, Zhang W, Wang K, Zong M (2017) Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium–sulfur batteries. Chem Eng J 327:855–867

    Article  CAS  Google Scholar 

  10. Hu C, Chen H, Shen Y et al (2017) In situ wrapping of the cathode material in lithium–sulfur batteries. Nat Commun 8:479

    Article  Google Scholar 

  11. Deng N, Wang Y, Yan J et al (2017) A F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide separator for high-performance lithium–sulfur batteries. J Power Sources 362:243–249

    Article  CAS  Google Scholar 

  12. Li S, Ren G, Hoque MNF, Dong Z, Warzywoda J, Fan Z (2017) Carbonized cellulose paper as an effective interlayer in lithium–sulfur batteries. Appl Surf Sci 396:637–643

    Article  CAS  Google Scholar 

  13. Yang D, Ni W, Cheng J et al (2017) Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries. Appl Surf Sci 413:209–218

    Article  CAS  Google Scholar 

  14. Zhu J, Chen C, Lu Y et al (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101:272–280

    Article  CAS  Google Scholar 

  15. Li J, Li K, Li M, Gosselink D, Zhang Y, Chen P (2014) A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J Power Sources 252:107–112

    Article  CAS  Google Scholar 

  16. Xue M, Chen C, Tan Y, Ren Z, Li B, Zhang C (2018) Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery. J Mater Sci 53:11062–11077. https://doi.org/10.1007/s10853-018-2370-9

    Article  CAS  Google Scholar 

  17. Walle MD, Zhang Z, Zhang M, You X, Li Y, Liu Y-N (2017) Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci 53:2685–2696. https://doi.org/10.1007/s10853-017-1678-1

    Article  CAS  Google Scholar 

  18. Choudhury S, Azizi M, Raguzin I et al (2017) Effect of fibrous separators on the performance of lithium–sulfur batteries. Phys Chem Chem Phys 19:11239–11248

    Article  CAS  Google Scholar 

  19. Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61

    Article  Google Scholar 

  20. Saffar A, Carreau PJ, Kamal MR, Ajji A (2014) Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface. Polymer 55:6069–6075

    Article  CAS  Google Scholar 

  21. Saffar A, Carreau PJ, Ajji A, Kamal MR (2014) Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. J Membr Sci 462:50–61

    Article  CAS  Google Scholar 

  22. Prasada Rao R, Adams S (2016) Membranes for rechargeable lithium sulphur semi-flow batteries. J Mater Sci 51:5556–5564. https://doi.org/10.1007/s10853-016-9860-4

    Article  CAS  Google Scholar 

  23. Zhou G, Li L, Wang DW et al (2015) A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater 27:641–647

    Article  CAS  Google Scholar 

  24. Chen H, Kong L, Wang Y (2015) Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. J Membr Sci 487:109–116

    Article  CAS  Google Scholar 

  25. Wang Y, Deng J, Zhong W, Kong L, Yang W (2005) Facile surface superhydrophilic modification: NVP/MBA inverse microemulsion surface-grafting polymerization initiated by UV light. Macromol Rapid Commun 26:1788–1793

    Article  CAS  Google Scholar 

  26. Wang L, Wei J, Zhao K, Wu B (2015) Preparation and characterization of high-hydrophilic polyhydroxy functional PP hollow fiber membrane. Mater Lett 159:189–192

    Article  CAS  Google Scholar 

  27. Chashmejahanbin MR, Salimi A, Ershad Langroudi A (2014) The study of the coating adhesion on PP surface modified in different plasma/acrylic acid solution. Int J Adhes Adhes 49:44–50

    Article  CAS  Google Scholar 

  28. Morávek T, Fialová M, Kopkáně D, Ráheľ J, Sťahel P, Černák M (2014) Nonthermal plasma modification of polypropylene fibres for cementitious composites. Open Chem 13:236–244

    Article  Google Scholar 

  29. Chen H, Lin Q, Xu Q, Yang Y, Shao Z, Wang Y (2014) Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J Membr Sci 458:217–224

    Article  CAS  Google Scholar 

  30. Labay C, Canal JM, Modic M et al (2015) Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials 71:132–144

    Article  CAS  Google Scholar 

  31. Song L, Zhao J, Yang H et al (2011) Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid. Appl Surf Sci 258:425–430

    Article  CAS  Google Scholar 

  32. Kim ET, Park J, Kim C et al (2016) Conformal polymeric multilayer coatings on sulfur cathodes via the layer-by-layer deposition for high capacity retention in Li–S batteries. ACS Macro Lett 5:471–475

    Article  CAS  Google Scholar 

  33. Kumar J, Kichambare P, Rai AK, Bhattacharya R, Rodrigues S, Subramanyam G (2016) A high performance ceramic-polymer separator for lithium batteries. J Power Sources 301:194–198

    Article  CAS  Google Scholar 

  34. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010

    Article  CAS  Google Scholar 

  35. Zhu X, Jiang X, Ai X, Yang H, Cao Y (2015) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126

    Article  CAS  Google Scholar 

  36. Liang Y, Lin Z, Qiu Y, Zhang X (2011) Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochim Acta 56:6474–6480

    Article  CAS  Google Scholar 

  37. Chen G, Zhai W, Wang Z et al (2015) Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile. Mater Res Bull 72:204–210

    Article  CAS  Google Scholar 

  38. Roy A, Moulik S, Sridhar S, De S (2015) Potential of extraction of Steviol glycosides using cellulose acetate phthalate (CAP)–polyacrylonitrile (PAN) blend hollow fiber membranes. J Food Sci Technol 52:7081–7091

    Article  CAS  Google Scholar 

  39. Patel M, Bhattacharyya AJ (2008) Plastic–polymer composite electrolytes: novel soft matter electrolytes for rechargeable lithium batteries. Electrochem Commun 10:1912–1915

    Article  CAS  Google Scholar 

  40. Li X, Li Z, Dang X, Luan D, Wang F (2018) Effect of pre-carbonization temperature on the properties of plasticized spinning polyacrylonitrile fibers. Fibers Polym 19:692–696

    Article  CAS  Google Scholar 

  41. Abedi M, Sadeghi M, Pourafshari Chenar M (2015) Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J Taiwan Inst Chem Eng 55:42–48

    Article  CAS  Google Scholar 

  42. Chouhan S, Bhatt R, Bajpai AK, Bajpai J, Katare R (2015) Investigation of UV absorption and antibacterial behavior of zinc oxide containing poly(vinyl alcohol-g-acrylonitrile) (PVA-g-PAN) nanocomposites films. Fibers Polym 16:1243–1254

    Article  CAS  Google Scholar 

  43. Lai C-L, Chao W-C, Hung W-S et al (2015) Physicochemical effects of hydrolyzed asymmetric polyacrylonitrile membrane microstructure on dehydrating butanol. J Membr Sci 490:275–281

    Article  CAS  Google Scholar 

  44. Wang L, Tang C, Yun Y (2011) Preparation and characterization of a new kind of UV-grafted ion-recognition membrane. Desalination Water Treat 34:216–221

    Article  CAS  Google Scholar 

  45. Xu J, Xu L, Xu H, Sun F, Gao X, Gao C (2015) Stability and permeation behavior of a porous membrane modified by polyelectrolyte networks enabled by electro-deposition and cross-linking for water purification. J Membr Sci 496:21–30

    Article  CAS  Google Scholar 

  46. Wang Q, Song W-L, Fan L-Z, Shi Q (2015) Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. J Power Sources 295:139–148

    Article  CAS  Google Scholar 

  47. Pan K, Gu H, Cao B (2013) Interfacially polymerized thin-film composite membrane on UV-induced surface hydrophilic-modified polypropylene support for nanofiltration. Polym Bull 71:415–431

    Article  Google Scholar 

  48. Xiao W, Zhang K, Liu J, Yan C (2017) Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries. J Mater Sci Mater Electron 28:17516–17525. https://doi.org/10.1021/cr020738u?src=recsys

    Article  CAS  Google Scholar 

  49. Butruk-Raszeja BA, Trzaskowska PA, Kuźminska A, Ciach T (2016) Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization. Open Chem 14:206–214

    Article  CAS  Google Scholar 

  50. Nawrocka A, Krekora M, Niewiadomski Z, Mis A (2018) FTIR studies of gluten matrix dehydration after fibre polysaccharide addition. Food Chem 252:198–206

    Article  CAS  Google Scholar 

  51. Konarov A, Gosselink D, Doan TNL, Zhang Y, Zhao Y, Chen P (2014) Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries. J Power Sources 259:183–187

    Article  CAS  Google Scholar 

  52. Wei S, Ma L, Hendrickson KE, Tu Z, Archer LA (2015) Metal-sulfur battery cathodes based on PAN-sulfur composites. J Am Chem Soc 137:12143–12152

    Article  CAS  Google Scholar 

  53. Huang J-Q, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145

    Article  Google Scholar 

  54. Demir-Cakan R (2015) Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium–sulphur batteries. J Power Sources 282:437–443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. U1504211, 51502082, 21471049), the Key Project of Science and Technology Department of Henan Province (Nos. 172102210049, 172102210349), and the Key Project of Science and Technology of Henan Educational Committee, China (No. 14B150007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyun Yue or Shuting Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yue, H., Wang, Q. et al. A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries. J Mater Sci 54, 1566–1579 (2019). https://doi.org/10.1007/s10853-018-2903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2903-2

Keywords

Navigation