Skip to main content

Advertisement

Log in

Distinct responses of nanostructured layered muscovite to uniform and nonuniform straining

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the first effort to investigate the effects of uniform and nonuniform prestraining on the mechanical properties of nanostructured multilayers. Thin muscovite sheets were first subjected to a loading–unloading cycle under unidirectional compression and cantilever bending modes that induce uniform and nonuniform prestraining, respectively, and then probed by nanoindentation to characterize their Young’s modulus and hardness. Optical and electron microscopy and X-ray diffraction were also used to uncover prestraining-induced microstructure alterations. Precompression in the c* direction to a stress of 45 MPa induces elastic uniform straining and causes negligible alteration to the microstructure. Such a prestrained specimen possesses unaltered Young’s modulus and hardness. However, the nonuniformly prestrained specimens that were subjected to cantilever bending, even though bending is macroscopically purely elastic, exhibit decreased Young’s modulus and hardness, and such reduction depends on the magnitude of bending strains. The Young’s modulus decreases by up to 41.0%, from 69.5 to 41.0 GPa at 0 to ~ 6% bending strains, respectively, while the maximum hardness reduction is 40.4%. Such distinction induced by different prestraining modes stems from the bending-induced nonuniform straining as well as the muscovite’s unique nanoscale layered structure. Owing to the relatively weaker and reversible electrostatic interlayer bonding, bending-induced strain gradient along the c* direction causes relative interlayer slip and hence bonding switch and, upon unloading, leads to the formation of basal plane corrugation and subsurface blisters. Such structural incoherence and imperfections induced by even elastic bending reduce the Young’s modulus and hardness. These findings shed light on the processing–structure–property relationships for other nanostructured multilayers as well as the origin of variability of elastic modulus of muscovites reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Guggenheim S, Vhang YH, Van Groos Koster AF (1987) Muscovite dehydroxylation: high temperature studies. Am Miner 72:537–550

    CAS  Google Scholar 

  2. Scott AD, Smith SJ (1967) Visible changes in macro mica particles that occur with potassium depletion. Clays Clay Miner 15:357–373. https://doi.org/10.1346/CCMN.1967.0150138

    Article  CAS  Google Scholar 

  3. Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278:1–229

    Article  Google Scholar 

  4. Routson RC, Kittrick JA (1971) Illite solubility. Soil Sci Soc Am Proc 35:714–718

    Article  CAS  Google Scholar 

  5. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks, part 1: static and dynamic elastic properties and anisotropy. Geophysics 78:D381–D392. https://doi.org/10.1190/geo2013-0050.1

    Article  Google Scholar 

  6. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks, part 2: ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics 78:D393–D402. https://doi.org/10.1190/geo2013-0051.1

    Article  Google Scholar 

  7. Bayuk IO, Ammerman M, Chesnokov EM (2007) Elastic moduli of anisotropic clay. Geophysics 72:D107. https://doi.org/10.1190/1.2757624

    Article  Google Scholar 

  8. Sayers CM, Den Boer LD (2016) The elastic anisotropy of clay minerals. Geophysics 81:C193–C203. https://doi.org/10.1190/geo2016-0005.1

    Article  Google Scholar 

  9. Mondol NH, Jahren J, Bjørlykke K, Brevik I (2008) Elastic properties of clay minerals. Lead Edge 27:758. https://doi.org/10.1190/1.2944163

    Article  Google Scholar 

  10. Teich-McGoldrick SL, Greathouse JA, Cygan RT (2012) Molecular dynamics simulations of structural and mechanical properties of muscovite: pressure and temperature effects. J Phys Chem C 116:15099–15107. https://doi.org/10.1021/jp303143s

    Article  CAS  Google Scholar 

  11. Vaughan M, Guggenheim S (1986) Elasticity of muscovite and its relationship to crystal structure. J Geophys Res 91:4657. https://doi.org/10.1029/JB091iB05p04657

    Article  CAS  Google Scholar 

  12. Terzaghi K (1931) The influence of elasticity and permeability on the swelling of two-phase systems. In: Alexander J (ed) Colloid chemistry. Chemical Catalog Co., New York, pp 65–88

    Google Scholar 

  13. Mitchell JK, Moore CA (1974) Electromagnetic forces and soil strength. Géotechnique 24:627–640. https://doi.org/10.1680/geot.1974.24.4.627

    Article  Google Scholar 

  14. Denison IA, Fry WH, Gile PL (1929) Alteration of muscovite and biotite in the soil. Technical Bulletin 128

  15. Wu PC, Chen PF, Do TH et al (2016) Heteroepitaxy of Fe3O4/muscovite: a new perspective for flexible spintronics. ACS Appl Mater Interfaces 8:33794–33801. https://doi.org/10.1021/acsami.6b11610

    Article  CAS  Google Scholar 

  16. Ke S, Chen C, Fu N et al (2016) Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces 8:28406–28411. https://doi.org/10.1021/acsami.6b09166

    Article  CAS  Google Scholar 

  17. Low CG, Zhang Q (2012) Ultra-thin and flat mica as gate dielectric layers. Small 8:2178–2183. https://doi.org/10.1002/smll.201200300

    Article  CAS  Google Scholar 

  18. Imazono T, Hirono T, Kimura H et al (2005) Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method. Rev Sci Instrum 76:126106. https://doi.org/10.1063/1.2140492

    Article  CAS  Google Scholar 

  19. Taruta S, Obara R, Takusagawa N, Kitajima K (2005) Effect of layer charge on chemical and physical properties of synthetic K-fluorine micas. J Mater Sci 40:5597–5602. https://doi.org/10.1007/s10853-005-1428-7

    Article  CAS  Google Scholar 

  20. Gebhardt A, Höche T, Carl G, Khodos II (1999) TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics. Acta Mater 47:4427–4434. https://doi.org/10.1016/S1359-6454(99)00317-1

    Article  CAS  Google Scholar 

  21. Höche T, Habelitz S, Avramov I (1999) Crystal morphology engineering in SiO2–Al2O3–MgO–K2O–Na2O–F-mica glass-ceramics. Acta Mater 47:735–744. https://doi.org/10.1016/S1359-6454(98)00424-8

    Article  Google Scholar 

  22. Habelitz S, Höche T, Hergt R et al (1999) Microstructural design through epitaxial growth in extruded mica glass-ceramics. Acta Mater 47:2831–2840. https://doi.org/10.1016/S1359-6454(99)00135-4

    Article  CAS  Google Scholar 

  23. Riedrich-Möller J, Arend C, Pauly C et al (2014) Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett 14:5281–5287. https://doi.org/10.1021/nl502327b

    Article  CAS  Google Scholar 

  24. Hölzer G, Wehrhan O, Heinisch J et al (1998) Flat and spherically bent muscovite (mica) crystals for X-ray spectroscopy. Phys Scr 57:301–309. https://doi.org/10.1088/0031-8949/57/2/029

    Article  Google Scholar 

  25. Fu YT, Zartman GD, Yoonessi M et al (2011) Bending of layered silicates on the nanometer scale: mechanism, stored energy, and curvature limits. J Phys Chem C 115:22292–22300. https://doi.org/10.1021/jp208383f

    Article  CAS  Google Scholar 

  26. Barsoum MW, Murugaiah A, Kalidindi SR, Zhen T (2004) Kinking nonlinear elastic solids, nanoindentations, and geology. Phys Rev Lett 92:255508. https://doi.org/10.1103/PhysRevLett.92.255508

    Article  CAS  Google Scholar 

  27. Mariani E, Brodie KH, Rutter EH (2006) Experimental deformation of muscovite shear zones at high temperatures under hydrothermal conditions and the strength of phyllosilicate-bearing faults in nature. J Struct Geol 28:1569–1587. https://doi.org/10.1016/j.jsg.2006.06.009

    Article  Google Scholar 

  28. Van Diggelen E, De Bresser J, Peach CJ, Spiers CJ (2010) High shear strain behaviour of synthetic muscovite fault gouges under hydrothermal conditions. J Struct Geol 32:1685–1700. https://doi.org/10.1016/j.jsg.2009.08.020

    Article  Google Scholar 

  29. Smyth JR, Jacobsen SD, Swope RJ et al (2000) Crystal structures and compressibilities of synthetic 2M1 and 3T phengite micas. Eur J Miner 12:955–963. https://doi.org/10.1127/0935-1221/2000/0012-0955

    Article  CAS  Google Scholar 

  30. Comodi P, Zanazzi FP (1995) High-pressure structural study of muscovite. Phys Chem Miner 22:170–177. https://doi.org/10.1007/BF00202297

    Article  CAS  Google Scholar 

  31. Knyazev SA, Korsukov VE (2004) Transformation of the surface structure of bending-strained muscovite crystals. Tech Phys Lett 30:463–465. https://doi.org/10.1134/1.1773336

    Article  CAS  Google Scholar 

  32. Faust J, Knittle E (1994) Static compression of chondrodite: implications for water in the upper mantle. Geophys Res Lett 21:1935–1938. https://doi.org/10.1029/94GL01592

    Article  CAS  Google Scholar 

  33. Griggs J, Lang AC, Gruber J et al (2017) Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2. Acta Mater 131:141–155. https://doi.org/10.1016/j.actamat.2017.03.055

    Article  CAS  Google Scholar 

  34. Gruber J, Lang AC, Griggs J et al (2016) Evidence for bulk ripplocations in layered Solids. Sci Rep 6:1–8. https://doi.org/10.1038/srep33451

    Article  CAS  Google Scholar 

  35. Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8:225–280. https://doi.org/10.1016/0016-7037(55)90001-6

    Article  CAS  Google Scholar 

  36. McNeil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys Condens Matter 5:1681–1690. https://doi.org/10.1088/0953-8984/5/11/008

    Article  CAS  Google Scholar 

  37. Sekine T, Rubin AM, Ahrens TJ (1991) Shock wave equation of state of muscovite. J Geophys Res Solid Earth 96:19675–19680. https://doi.org/10.1029/91JB02253

    Article  Google Scholar 

  38. Alexandrov KS, Ryzhova TV (1961) Elastic properties of rock-forming minerals. II Layered silicates. Bulletin of the Academy of Sciences of the USSR Geophysics Series. Pergamon Press, New York, pp 1165–1168

    Google Scholar 

  39. Zhang G, Wei Z, Ferrell RE et al (2010) Evaluation of the elasticity normal to the basal plane of non-expandable 2:1 phyllosilicate minerals by nanoindentation. Am Miner 95:863–869. https://doi.org/10.2138/am.2010.3398

    Article  CAS  Google Scholar 

  40. Zhang J, Hu L, Pant R et al (2013) Effects of interlayer interactions on the nanoindentation behavior and hardness of 2:1 phyllosilicates. Appl Clay Sci 80–81:267–280. https://doi.org/10.1016/j.clay.2013.04.013

    Article  CAS  Google Scholar 

  41. Menčík J, Munz D, Quandt E et al (1997) Determination of elastic modulus of thin layers using nanoindentation. J Mater Res 12:2475–2484. https://doi.org/10.1557/JMR.1997.0327

    Article  Google Scholar 

  42. Mavko G, Mukerji T, Dvokin J (1998) The rock physics handbook. Cambridge University Press, New York

    Google Scholar 

  43. Faust J, Knittle E (1994) The equation of state, amorphization, and high-pressure phase diagram of muscovite. J Geophys Res Solid Earth 99:19785–19792. https://doi.org/10.1029/94JB01185

    Article  CAS  Google Scholar 

  44. Zartman GD, Liu H, Akdim B et al (2010) Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress. J Phys Chem C 114:1763–1772. https://doi.org/10.1021/jp907012w

    Article  CAS  Google Scholar 

  45. Caslavsky JL, Vedam K (1970) Muscovites with isotropic and anisotropic elasticity in the basal plane. Am Miner 55:1633–1638

    CAS  Google Scholar 

  46. Hull D (1997) The geometry of cracks and blisters in mica. Acta Mater 45:233–244. https://doi.org/10.1016/S1359-6454(96)00162-0

    Article  CAS  Google Scholar 

  47. Amelinckx S (1952) La Croissance Helicoidale de Cristaux du Biotite. C. R. Acad. Sci, Paris

    Google Scholar 

  48. Amelinckx S, Delavignette P (1960) Observation of dislocations in non-metallic layer structures. Nature 185:603–604. https://doi.org/10.1038/185603a0

    Article  CAS  Google Scholar 

  49. Zhang G, Wei Z, Ferrell RE (2009) Reply to the Comment on “Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation” by G. Zhang, Z. Wei and R. E. Ferrell [Applied Clay Science 43 (2009) 271–281]. Appl Clay Sci 46:429–432. https://doi.org/10.1016/j.clay.2009.08.009

    Article  CAS  Google Scholar 

  50. Zhang G, Wei Z, Ferrell RE (2009) Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl Clay Sci 43:271–281. https://doi.org/10.1016/j.clay.2008.08.010

    Article  CAS  Google Scholar 

  51. Nix WD, Gao HJ (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425. https://doi.org/10.1016/s0022-5096(97)00086-0

    Article  CAS  Google Scholar 

  52. Castellanos-Gomez A, Poot M, Amor-Amorós A et al (2012) Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res 5:550–557. https://doi.org/10.1007/s12274-012-0240-3

    Article  Google Scholar 

Download references

Acknowledgements

This first author, Fuli Ma, was supported by a visiting student scholarship from the China Scholarship Council (No. 201406930009), Postgraduate Innovation Foundation of Shanxi Province (No. 20133034) and National Natural Science Foundation of China (Nos. 51178287, 51578359). Shengmin Luo received partial support from the Student Research Grant of the US Clay Minerals Society as well as partial support from Hess Corporation under the supervision of Dr. Keith Katahara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Song, J., Luo, S. et al. Distinct responses of nanostructured layered muscovite to uniform and nonuniform straining. J Mater Sci 54, 1077–1098 (2019). https://doi.org/10.1007/s10853-018-2887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2887-y

Keywords

Navigation