Skip to main content
Log in

Synergistic impact of Ni–Cu hybrid oxides deposited on ordered mesoporous carbon scaffolds as non-noble catalyst for methanol oxidation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-conventional soft-template method was deployed in synthesizing high surface area, ordered mesoporous carbon (OMC). Ordered mesoporous framework was confirmed from the collective data derived from XRD, N2 sorption and HR-TEM analyses. 15 wt% of variant compositions of Ni:Cu viz., 3:1, 1:1, 1:3 and pristine nickel and copper were deposited onto the OMC by using NaBH4 as a reductant and cetyltrimethylammonium bromide as capping agent. The effect of the reductant in the formation of a particular metal phase was well comprehended from the high angle XRD patterns; the reduction in surface area of the support after metal deposition was taken into account from the N2 sorption analysis. SEM–EDX and HR-TEM–EDX techniques were useful in quantifying the wt% of the deposited metals. The redox properties, charge transfer resistance and stability of all the catalysts toward methanol oxidation were characterized via cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry, respectively. Among all the tested samples, high specific surface area (436 m2 g−1), highest current density (182.07 mA cm−2), least onset potential (0.34 V) and charge transfer resistance (Rct) value of 0.355 Ω with 87.68% retention in current density over 7200 s were achieved when Ni and Cu were mixed in equal weight% to give NiCu hybrid oxides@OMC electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  2. Carrette L, Andreas Friedrich K, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. ChemPhysChem 1:162–193

    Article  CAS  Google Scholar 

  3. Parsons R, Vander Noot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Chem Interfacial Electrochem 257:9–45

    Article  CAS  Google Scholar 

  4. Nishimura K, Machida K, Enyo M (1988) Electrooxidation of formate and formaldehyde on electrodes of alloys between Pd and Group IB metals in alkaline media: part II. The possibility of complete oxidation of formaldehyde in weak alkali. J Electroanal Chem Interfacial Electrochem 251:117–125

    Article  CAS  Google Scholar 

  5. Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453

    Article  CAS  Google Scholar 

  6. Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 38:445–457

    Article  CAS  Google Scholar 

  7. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:275–283

    Article  CAS  Google Scholar 

  8. An H, Pan L, Cui H, Li B, Zhou D, Zhai J, Li Q (2013) Synthesis And performance of palladium-based catalysts for methanol and ethanol oxidation in alkaline fuel cells. Electrochim Acta 102:79–87

    Article  CAS  Google Scholar 

  9. Long NV, Yang Y, Minh Thi C, Minh NV, Cao Y, Nogami M (2013) The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2:636–676

    Article  Google Scholar 

  10. Barakat NA, Abdelkareem MA, Kim HY (2013) Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Appl Catal A 455:193–198

    Article  CAS  Google Scholar 

  11. Thamer BM, El-Newehya MH, Al-Deyab SS, Abdelkareem MA, Kim HY, Barakat NAM (2015) Cobalt-incorporated, nitrogen-doped carbon nanofibers as effective non-precious catalyst for methanol electrooxidation in alkaline medium. Appl Catal A 498:230–240

    Article  CAS  Google Scholar 

  12. Doner A, Telli E, Kardas G (2012) Electrocatalysis of Ni-promoted Cd Coated graphite toward methanol oxidation in alkaline medium. J Power Sources 205:71–79

    Article  Google Scholar 

  13. Barakat NA, Abadir M, Shaheer Akhtar M, El-Newehy M, Y-s S, Yong Kim H (2012) Synthesis and characterization of Pd-doped Co nanofibers as a multifunctional nanostructure. Mater Lett 85:120–123

    Article  CAS  Google Scholar 

  14. Barakat NA, Motlak M (2014) CoxNiy-decorated graphene as novel, stable and super effective non-precious electro-catalyst for methanol oxidation. Appl Catal B 154:221–231

    Article  Google Scholar 

  15. Barakat NA, Motlak M, Lim BH, El-Newehy MH, Al-Deyab SS (2014) Effective and stable CoNi alloy-loaded graphene for ethanol oxidation in alkaline medium. J Electrochem Soc 161:F1194–F1201

    Article  Google Scholar 

  16. Serov A, Kwak C (2009) Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl Catal B Environ 90:313–320

    Article  CAS  Google Scholar 

  17. Xu C, Hu Y, Rong J, Jiang SP, Liu Y (2007) Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem Commun 9:2009–2012

    Article  CAS  Google Scholar 

  18. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134:160–169

    Article  CAS  Google Scholar 

  19. Fan C, Piron D, Sleb A, Paradis P (1994) Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J Electrochem Soc 141:382–387

    Article  CAS  Google Scholar 

  20. Das S, Dutta K, Kundu PP (2015) Nickel nanocatalysts supported on sulfonated polyaniline: potential toward methanol oxidation and as anode materials for DMFCs. J Mater Chem A 3:11349–11357

    Article  CAS  Google Scholar 

  21. Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni–Cu alloy in alkaline medium. J Appl Electrochem 36:913–918

    Article  CAS  Google Scholar 

  22. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrog Energy 33:4367–4376

    Article  CAS  Google Scholar 

  23. Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN (2005) The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. J Power Sources 145:178–187

    Article  CAS  Google Scholar 

  24. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24

    Article  CAS  Google Scholar 

  25. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2:6266–6291

    Article  CAS  Google Scholar 

  26. Qi J, Jiang L, Tang Q, Zhu S, Wang S, Yi B, Sun G (2012) Synthesis of graphitic mesoporous carbons with different surface areas and their use in direct methanol fuel cells. Carbon 50:2824–2931

    Article  CAS  Google Scholar 

  27. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746

    Article  CAS  Google Scholar 

  28. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13:677–681

    Article  CAS  Google Scholar 

  29. Meng Y, Dong G, Zhang F, Shi Y, Cheng L, Feng D, Zhangxiong W, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered Mesoporous polymer resin and carbon structures from organic - organic self- assembly. Chem Mater 18:4447–4464

    Article  CAS  Google Scholar 

  30. Liu D, Lei J-H, Guo L-P, Deyu Q, Li Yu, Bao-Lian S (2012) One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon 50:476–487

    Article  CAS  Google Scholar 

  31. Khan IA, Qian Y, Badshah A, Nadeem MA, Zhao D (2016) Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Appl Mater Interfaces 8:17268–17275

    Article  CAS  Google Scholar 

  32. Mingyi Juhyon Yu, Muhammad GF, Wang A, Guangli Yu, Ma H, Zhu G (2014) Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol–melamine–formaldehyde resin. Microporous Mesoporous Mater 190:117–127

    Article  Google Scholar 

  33. Liu B, Shioyama H, Tomoki Akita Qiang X (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Article  CAS  Google Scholar 

  34. Liu B, Shioyama H, Jiang H, Zhang X, Qiang X (2010) Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463

    Article  CAS  Google Scholar 

  35. Rajamathi M, Subbanna GN, Vishnu Kamath P (1997) On the existence of a nickel hydroxide phase which is neither α nor β. J Mater Chem 7:2293–2296

    Article  CAS  Google Scholar 

  36. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2014) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A. https://doi.org/10.1098/rspa.2014.0792

    Article  Google Scholar 

  37. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299

    Article  CAS  Google Scholar 

  38. Badawy SM, El Khashab RA, Nayl AA (2015) Synthesis, characterization and catalytic activity of Cu/Cu2O nanoparticles prepared in aqueous medium. Bull Chem React Eng Catal 10:169–174

    Article  CAS  Google Scholar 

  39. Maiyalagan T, Alaje TO, Scott K (2012) Highly stable Pt–Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt–Ru/CMK-8) as promising electrocatalysts for methanol oxidation. J Phys Chem C 116:2630–2638

    Article  CAS  Google Scholar 

  40. Said AE-AA, Abd El-Wahab MMM, Abd El-Aal M (2016) Catalytic dehydration of methanol to dimethyl ether over nanosized WO3/Al2O3 system under inert and oxidative atmosphere. Monatsh Chem 147:1507–1516

    Article  CAS  Google Scholar 

  41. Akhavan O, Azimirad R, Safa S, Hasani E (2011) CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J Mater Chem 21:9634–9640

    Article  CAS  Google Scholar 

  42. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213

    Article  CAS  Google Scholar 

  43. Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A (2015) Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7:1170–1179

    Article  CAS  Google Scholar 

  44. Singh B, Murad L, Laffir F, Dickinson C, Dempsey E (2011) Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Nanoscale 3:3334–3349

    Article  CAS  Google Scholar 

  45. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  46. Moosavifard SE, Shamsi J, Fani S, Kadkhodazade S (2014) Facile synthesis of hierarchical CuO nanorod arrays on carbon nano fibers for high-performance supercapacitors. Ceram Int 40:15973–15979

    Article  CAS  Google Scholar 

  47. Eileen Hao Yu, Scott K, Reeve RW, Yang L, Allen RG (2004) Characterisation of platinised Ti mesh electrodes using electrochemical methods:methanol oxidation in sodium hydroxide solutions. Electrochim Acta 49:2443–2452

    Article  Google Scholar 

  48. Fleischmann M, Korinek K, Pletcher D (1972) The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J Chem Soc Perkin Trans 2(10):1396–1403

    Article  Google Scholar 

  49. Fleischmann M, Korinek K, Pletcher D (1971) The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem 31:39–49

    Article  CAS  Google Scholar 

  50. Heli H, Jafarian M, Mahjani MG, Gobal F (2004) Electro-oxidation of methanol on copper in alkaline solution. Electrochim Acta 49:4999–5006

    Article  CAS  Google Scholar 

  51. Yousef A, Brooks RM, Abdelkareem MA, Khamaj JA, El-Halwany MM, Barakat NAM, EL-Newehy MH, Kimb HY (2015) Electrospun NiCu nanoalloy decorated on carbon nanofibers as chemical stable electrocatalyst for methanol oxidation. ECS Electrochem Lett 4:F51–F55

    Article  CAS  Google Scholar 

  52. Motlaka M, Barakat NAM, El-Deenb GA, Hamzad AM, Obaida M, Yange OB, Akhtare MS, Khalilf KA (2015) NiCu bimetallic nanoparticle-decorated graphene as novel and cost-effective counter electrode for dye-sensitized solar cells and electrocatalyst for methanol oxidation. Appl Catal A 501:41–47

    Article  Google Scholar 

  53. Danaeea I, Jafariana M, Forouzandeha F, Gobalb F, Mahjania MG (2009) Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode. Int J Hydrog Energy 34:859–869

    Article  Google Scholar 

  54. Ding R, Liu J, Jiang J, Fei W, Zhu J, Huang X (2011) Tailored Ni–Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catal Sci Technol 1:1406–1411

    Article  CAS  Google Scholar 

  55. Telli E, Doner A, Kardas G (2013) Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium. Electrochem Acta 107:216–224

    Article  CAS  Google Scholar 

  56. Xu S, Ye L, Li Z, Wang Y, Lei F, Lin S (2016) Facile synthesis of bimetallic Pt-Ag/graphene composite and its electro-photo-synergistic catalytic properties for methanol oxidation. Catalysts 6(9):144. https://doi.org/10.3390/catal6090144

    Article  CAS  Google Scholar 

  57. Ren F, Wang C, Zhai C, Jiang F, Yue R, Du Y, Yang P, Xu J (2013) One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J Mater Chem A 1:7255–7261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for providing instrumentation and laboratory facility in the Department of Chemistry, Anna University, Chennai, India and at Sainergy Fuel Cell India Private Limited, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shanthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia Theres, G., Velayutham, G., Santhana Krishnan, P. et al. Synergistic impact of Ni–Cu hybrid oxides deposited on ordered mesoporous carbon scaffolds as non-noble catalyst for methanol oxidation. J Mater Sci 54, 1502–1519 (2019). https://doi.org/10.1007/s10853-018-2884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2884-1

Keywords

Navigation