Skip to main content

Advertisement

Log in

Effects of functionalization on energy storage properties and thermal conductivity of graphene/n-octadecane composite phase change materials

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Paraffin-based nanocomposites are widely used in the energy, microelectronics and aerospace industry as thermal energy storage materials due to their outstanding thermophysical properties. This paper investigates the effects of functionalization on thermal properties of graphene/n-octadecane nanocomposite during phase transition by using non-equilibrium molecular dynamics simulation. Different composite systems containing pristine graphene and graphene functionalized by hydroxyl, carboxyl and ethyl are constructed and studied. The results indicate that the thermal properties like diffusion coefficient, phase change temperature, heat capacity and thermal conductivity can be changed by both the functional types and functional coverage. Comparing with the unfunctionalized system, the system functionalized by ethyl obtained a 10 K increase in phase change temperature, a 12% increase in isobaric heat capacity at 300 K and a 59.8% increase in thermal conductivity at 320 K, and these values are larger than that of the systems functionalized by carboxyl and ethyl. The present findings provide a better understanding of the thermal mechanism of graphene/paraffin nanocomposites and effective guidance for improving their thermophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Li Z, Wu Y, Zhuang B, Zhao X, Tang Y, Ding X, Chen K (2017) Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity. Appl Energy 206:1147–1157

    Article  CAS  Google Scholar 

  2. Lin C, Rao Z (2017) Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: a molecular dynamics study. Appl Therm Eng 110:1411–1419

    Article  CAS  Google Scholar 

  3. Li Q, Yu Y, Liu Y, Liu C, Lin L (2017) Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: a molecular dynamics study. Materials 10:38. https://doi.org/10.3390/ma10010038

    Article  CAS  Google Scholar 

  4. Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra AK, Liu L (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465

    Article  CAS  Google Scholar 

  5. Zhang P, Yuan P, Jiang X, Zhai S, Zeng J, Xian Y, Qin H, Yang D (2017) A Theoretical review on interfacial thermal transport at the nanoscale. Small 14:1702769. https://doi.org/10.1002/smll.201702769

    Article  CAS  Google Scholar 

  6. Huang YR, Chuang PH, Chen CL (2015) Molecular-dynamics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites. Int J Heat Mass Transf 91:45–51

    Article  CAS  Google Scholar 

  7. Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M (2013) Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag 67:275–282

    Article  CAS  Google Scholar 

  8. Babaei H, Keblinski P, Khodadadi JM (2013) Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:209–216

    Article  CAS  Google Scholar 

  9. Wang M, Hu N, Zhou L, Yan C (2015) Enhanced interfacial thermal transport across graphene-polymer interfaces by grafting polymer chains. Carbon 85:414–421

    Article  CAS  Google Scholar 

  10. Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP, Duda JC, Robinson JT, Walton SG (2012) Manipulating thermal conductance at metal–graphene contacts via chemical functionalization. Nano Lett 12:590–595

    Article  CAS  Google Scholar 

  11. Wang Y, Yang C, Cheng Y, Zhang YY (2015) A molecular dynamics study on thermal and mechanical properties of graphene–paraffin nanocomposites. RSC Adv 5:82638–82644

    Article  CAS  Google Scholar 

  12. Jiang T, Zhang X, Vishwanath S, Mu X, Kanzyuba V, Sokolov DA, Ptasinska S, Go DB, Xing HG, Luo T (2016) Covalent bonding modulated graphene–metal interfacial thermal transport. Nanoscale 8:10993–11001

    Article  CAS  Google Scholar 

  13. Wang Y, Yang C, Pei Q, Zhang Y (2016) Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites. ACS Appl Mater Interfaces 8:8272–8279

    Article  CAS  Google Scholar 

  14. Zabihi Z, Araghi H (2016) Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite. Phys Lett A 380:3828–3831

    Article  CAS  Google Scholar 

  15. Shen X, Wang Z, Wu Y, Liu X, Kim J (2016) Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon 108:412–422

    Article  CAS  Google Scholar 

  16. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  17. Arash B, Wang Q, Varadan VK (2008) Mechanical properties of carbon nanotube/polymer composites. Polym Mater Sci Eng 4:6479. https://doi.org/10.1038/srep06479

    Article  CAS  Google Scholar 

  18. Zheng Q, Geng Y, Wang S, Li Z, Kim J (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315–4322

    Article  CAS  Google Scholar 

  19. Shen X, Wang Z, Wu Y, Liu X, He Y, Kim J (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16:3585–3593

    Article  CAS  Google Scholar 

  20. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  21. Berendsen HJC, Postma JPM, Gunsteren WFV, Dinola A, Haak JR (1998) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  22. Karasawa N, Goddard WAI (1992) Force fields, structures, and properties of poly (vinylidene fluoride) crystals. Macromolecules 25:7268–7281

    Article  CAS  Google Scholar 

  23. Ewald PP (1921) Evaluation of optical and electrostatics lattice potentials. Ann Phys N Y 64:253–287

    Article  Google Scholar 

  24. Makrodimitri ZA, Unruh DJM, Economou IG (2011) Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes. J Phys Chem B 115:1429–1439

    Article  CAS  Google Scholar 

  25. Hofmann D, Fritz L, Ulbrich J, Schepers C, Böhning M (2000) Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromol Theor Simul 9:293–327

    Article  CAS  Google Scholar 

  26. Yu S, Wang X, Wu D (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy 114:632–643

    Article  CAS  Google Scholar 

  27. Liu X, Rao Z (2017) Thermal diffusion and phase transition of n-octadecane as thermal energy storage material on nanoscale copper surface: a molecular dynamics study. J Energy Inst. https://doi.org/10.1016/j.joei.2017.10.011

    Article  Google Scholar 

  28. Yang S, Qu J (2012) Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer 53:4806–4817

    Article  CAS  Google Scholar 

  29. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, New York

    Google Scholar 

  30. Rao Z, Wang S, Peng F (2013) Self diffusion and heat capacity of n-alkanes based phase change materials: a molecular dynamics study. Int J Heat Mass Transf 64:581–589

    Article  CAS  Google Scholar 

  31. Miltenburg JCV, Oonk HAJ, Metivaud V (1999) Heat capacities and derived thermodynamic functions of n-nonadecane and n-eicosane between 10 and 390 K. J Chem Eng Data 44:715–720

    Article  Google Scholar 

  32. Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem C 114:6588–6594

    Article  CAS  Google Scholar 

  33. Zhang T, Gans-Forrest AR, Lee E, Zhang X, Qu C, Pang Y, Sun F, Luo T (2016) Role of hydrogen bonds in thermal transport across hard/soft material interfaces. ACS Appl Mater Interfaces 8:33326–33334

    Article  CAS  Google Scholar 

  34. Shiu S, Tsai J (2014) Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B Eng 56:691–697

    Article  CAS  Google Scholar 

  35. Das B, Eswar PK, Ramamurty U, Rao CN (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20:125705. https://doi.org/10.1088/0957-4484/20/12/125705

    Article  CAS  Google Scholar 

  36. Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–372

    Article  CAS  Google Scholar 

  37. Sun F, Zhang T, Jobbins MM, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T (2014) Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces. Adv Mater 26:6093–6099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the financial support provided by National Natural Science Foundation of China (Project No. 51506033), MIIT Key Laboratory of Thermal Control of Electronic Equipment (Grant No. 2017JJA001), Innovation Project of GUET Graduate Education (Grant No. 2018YJCX03), Guangxi Natural Science Foundation (Grant No. 2017JJA160108), and GUET Excellent Graduate Thesis Program (Grant No. 16YJPYSS03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, P., Zhang, P., Liang, T. et al. Effects of functionalization on energy storage properties and thermal conductivity of graphene/n-octadecane composite phase change materials. J Mater Sci 54, 1488–1501 (2019). https://doi.org/10.1007/s10853-018-2883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2883-2

Keywords

Navigation