Skip to main content

Advertisement

Log in

Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel ternary BiOCl/RGO/PCN nanocomposite was successfully fabricated through coupling-protonated g-C3N4 (PCN) sheets with GO by electrostatic attraction, followed by in situ synthesis of BiOCl layers on the surface on PCN/GO via hydrothermal reaction and simultaneously achieving the reduction in GO. The as-prepared BiOCl/RGO/PCN composite exhibited significantly enhanced photoactivities toward the degradation of representative antibiotic tetracycline and selective aerobic oxidation of benzyl alcohol compared to pristine g-C3N4, protonated g-C3N4, pure BiOCl and binary BiOCl/PCN composite under simulated solar light irradiation. The structure–property relationship was explored by several effective characterization techniques. The results show that RGO coordinated well with two semiconductors of BiOCl and PCN, and BiOCl/RGO/PCN composite with closely contacted interface exhibited broad optical adsorption range and effective photogenerated charge carrier separation efficiency, which are attributed to the improved photocatalytic performance. The results also demonstrate that a Z-scheme charge process was formed between BiOCl and PCN with RGO serving as electron transfer medium to promote the fast transporting of photoinduced electrons. Therefore, more photoinduced electrons and holes could retain in the CB of PCN and in the VB of BiOCl with strong redox ability, respectively, which is beneficial to the further effective generation of active radicals participating in photocatalytic reaction. This work provides a promising Z-scheme ternary photocatalyst with facile synthetic method and potential application in environmental pollution elimination and green oxidative organic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Singh R, Dutta S (2018) A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 220:607–620

    Article  CAS  Google Scholar 

  2. Li H, Li J, Ai ZH, Jia FL, Zhang LZ (2018) Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Edit 57(1):122–138

    Article  CAS  Google Scholar 

  3. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B-Environ 198:347–377

    Article  CAS  Google Scholar 

  4. Natarajan TS, Thampi KR, Tayade RJ (2018) Visible light driven redox-mediator-free dual semiconductor photocatalytic systems for pollutant degradation and the ambiguity in applying Z-scheme concept. Appl Catal B-Environ 227:296–311

    Article  CAS  Google Scholar 

  5. Liu HJ, Du CW, Bai HK, Su YZ, Wei DD, Wang YQ, Liu GG, Yang L (2018) Fabrication of plate-on-plate Z-scheme SnS2/Bi2MoO6 heterojunction photocatalysts with enhanced photocatalytic activity. J Mater Sci 53(15):10743–10757. https://doi.org/10.1007/s10853-018-2296-2

    Article  CAS  Google Scholar 

  6. Shi YN, Chen JJ, Mao ZY, Fahlman BD, Wang DJ (2017) Construction of Z-scheme heterostructure with enhanced photocatalytic H2 evolution for g-C3N4 nanosheets via loading porous silicon. J Catal 356:22–31

    Article  CAS  Google Scholar 

  7. Jiang ZF, Wan WM, Li HM, Yuan SQ, Zhao HJ, Wong PK (2018) A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater 30(10):1706108

    Article  Google Scholar 

  8. You ZY, Shen QH, Su YX, Yu Y, Wang H, Qin T, Zhang F, Cheng D, Yang H (2018) Construction of a Z-scheme core-shell g-C3N4/MCNTs/BiOI nanocomposite semiconductor with enhanced visible-light photocatalytic activity. New J Chem 42(1):489–496

    Article  CAS  Google Scholar 

  9. Wen JQ, Xie J, Chen XB, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  10. Li HY, Gan SY, Wang HY, Han DX, Niu L (2015) Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv Mater 27(43):6906–6913

    Article  CAS  Google Scholar 

  11. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  12. Ding F, Yang D, Tong ZW, Nan YH, Wang YJ, Zou XY, Jiang ZY (2017) Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ Sci-Nano 4(7):1455–1469

    Article  CAS  Google Scholar 

  13. Suyana P, Ganguly P, Nair BN, Mohamed AP, Warrier KGK, Hareesh US (2017) Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ Sci-Nano 4(1):212–221

    Article  CAS  Google Scholar 

  14. Zhang SW, Gao HH, Liu X, Huang YS, Xu XJ, Alharbi NS, Hayat T, Li JX (2016) Hybrid 0D–2D nanoheterostructures: in situ growth of amorphous silver silicates dots on g-C3N4 nanosheets for full-spectrum photocatalysis. ACS Appl Mater Interfaces 8(51):35138–35149

    Article  CAS  Google Scholar 

  15. Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang CH, Basu M, Pande S (2016) Synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction. Langmuir 32(39):10054–10064

    Article  CAS  Google Scholar 

  16. Sun M, Zeng Q, Zhao X, Shao Y, Ji PG, Wang CQ, Yan T, Du B (2017) Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: enhanced charge separation and excellent visible-light driven photocatalytic activity. J Hazard Mater 339:9–21

    Article  CAS  Google Scholar 

  17. Zhou L, Zhang W, Chen L, Deng HP (2017) Z-scheme mechanism of photogenerated carriers for hybrid photocatalyst Ag3PO4/g-C3N4 in degradation of sulfamethoxazole. J Colloid Interfaces Sci 487:410–417

    Article  CAS  Google Scholar 

  18. Tan YG, Shu Z, Zhou J, Li TT, Wang WB, Zhao ZL (2018) One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B-Environ 230:260–268

    Article  CAS  Google Scholar 

  19. Wang JC, Yao HC, Fan ZY, Zhang L, Wang JS, Zang SQ, Li ZJ (2016) Indirect Z-Scheme BiOl/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl Mater Interfaces 8(6):3765–3775

    Article  CAS  Google Scholar 

  20. Ma S, Xie J, Wen JQ, He KL, Li X, Liu W, Zhang XC (2017) Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl Surf Sci 391:580–591

    Article  CAS  Google Scholar 

  21. Zhu MY, Liu Q, Chen W, Yin YY, Ge L, Li HN, Wane K (2017) Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging. ACS Appl Mater Interfaces 9(44):38832–38841

    Article  CAS  Google Scholar 

  22. Bai Y, Wang PQ, Liu JY, Liu XJ (2014) Enhanced photocatalytic performance of direct Z-scheme BiOCl–g-C3N4 photocatalysts. RSC Adv 4(37):19456–19461

    Article  CAS  Google Scholar 

  23. Bai Y, Chen T, Wang PQ, Wang L, Ye LQ, Shi X, Bai W (2016) Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation. Sol Energ Mater Sol C 157:406–414

    Article  CAS  Google Scholar 

  24. Wu JJ, Shen XP, Miao XL, Ji ZY, Wang JH, Wang T, Liu MM (2017) An all-solid-state Z-Scheme g-C3N4/Ag/Ag3VO4 photocatalyst with enhanced visible-light photocatalytic performance. Eur J Inorg Chem 21:2845–2853

    Article  Google Scholar 

  25. Ma D, Wu J, Gao MC, Xin YJ, Chai C (2017) Enhanced debromination and degradation of 2,4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem Eng J 316:461–470

    Article  CAS  Google Scholar 

  26. Che HN, Liu CB, Hu W, Hu H, Li JQ, Dou JY, Shi WD, Li CM, Dong HJ (2018) NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions. Catal Sci Technol 8(2):622–631

    Article  CAS  Google Scholar 

  27. Brigante M, Schulz PC (2011) Remotion of the antibiotic tetracycline by titania and titania-silica composed materials. J Hazard Mater 192(3):1597–1608

    Article  CAS  Google Scholar 

  28. Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7(18):9630–9637

    Article  CAS  Google Scholar 

  29. Mboula VM, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364

    Article  Google Scholar 

  30. Xie ZJ, Feng YP, Wang FL, Chen DN, Zhang QX, Zeng YQ, Lv WY, Liu GG (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B-Environ 229:96–104

    Article  CAS  Google Scholar 

  31. Luo BF, Chen M, Zhang ZY, Xu J, Li D, Xu DB, Shi WD (2017) Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst. Dalton Trans 46(26):8431–8438

    Article  CAS  Google Scholar 

  32. Guo F, Shi WL, Wang HB, Han MM, Li H, Huang H, Liu Y, Kang ZH (2017) Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol 7(15):3325–3331

    Article  CAS  Google Scholar 

  33. Zhang YH, Tang ZR, Fu X, Xu YJ (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(9):7426–7435

    Article  CAS  Google Scholar 

  34. Qin N, Liu YH, Wu WM, Shen LJ, Chen X, Li ZH, Wu L (2015) One-Dimensional CdS/TiO2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization, and performance. Langmuir 31(3):1203–1209. https://doi.org/10.1021/la503731y

    Article  CAS  Google Scholar 

  35. Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51(1):68–89

    Article  CAS  Google Scholar 

  36. Wang ZT, Song YJ, Zou JH, Li LY, Yu Y, Wu L (2018) The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol. Catal Sci Technol 8(1):268–275

    Article  CAS  Google Scholar 

  37. Zhang LG, Liu D, Guan J, Chen XF, Guo XC, Zhao FH, Hou TG, Mu XD (2014) Metal-free g-C3N4 photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light. Mater Res Bull 59:84–92

    Article  CAS  Google Scholar 

  38. Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Selective oxidation of alcohols using photoactive VO@g-C3N4. ACS Sustain Chem Eng 4(3):1094–1098

    Article  CAS  Google Scholar 

  39. Yuan MQ, Tian F, Li GF, Zhao HP, Liu YL, Chen R (2017) Fe(III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation. Ind Eng Chem Res 56(20):5935–5943

    Article  CAS  Google Scholar 

  40. Ramacharyulu PVRK, Abbas SJ, Sahoo SR, Ke SC (2018) Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systems. Catal Sci Technol 8(11):2825–2834

    Article  CAS  Google Scholar 

  41. Shen J, Xue JJ, He GY, Ni J, Chen ZX, Tang B, Zhou ZW, Chen HQ (2018) Construction of 3D marigold-like Bi2WO6/Ag2O/CQDs heterostructure with superior visible-light active photocatalytic activity toward tetracycline degradation and selective oxidation. J Mater Sci 53(17):12040–12055. https://doi.org/10.1007/s10853-018-2479-x

    Article  CAS  Google Scholar 

  42. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  43. Meng SG, Ye XJ, Ning XF, Xie ML, Fu XL, Chen SF (2016) Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl Catal B-Environ 182:356–368

    Article  CAS  Google Scholar 

  44. Liu Y, Yan K, Zhang JD (2016) Graphitic carbon nitridesensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces 8(42):28255–28264

    Article  CAS  Google Scholar 

  45. Liu WW, Shang YY, Zhu AQ, Tan PF, Liu Y, Qiao LL, Chu DW, Xiong X, Pan J (2017) Enhanced performance of doped BiOCl nanoplates for photocatalysis: understanding from doping insight into improved spatial carrier separation. J Mater Chem A 5(24):12542–12549

    Article  CAS  Google Scholar 

  46. Bao YC, Chen KZ (2018) Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Appl Surf Sci 437:51–61

    Article  CAS  Google Scholar 

  47. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770

    Article  CAS  Google Scholar 

  48. Zhao QH, Xing YX, Liu ZL, Ouyang J, Du CF (2018) Synthesis and characterization of modified BiOCl and their application in adsorption of low-concentration dyes from aqueous solution. Nanoscale Res Lett 13:69

    Article  Google Scholar 

  49. Gao FD, Zeng DW, Huang QW, Tian SQ, Xie CS (2012) Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Phys Chem Chem Phys 14(30):10572–10578

    Article  CAS  Google Scholar 

  50. Xia PF, Zhu BC, Cheng B, Yu JG, Xu JS (2018) 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain Chem Eng 6(1):965–973

    Article  CAS  Google Scholar 

  51. Ding J, Xu W, Wan H, Yuan DS, Chen C, Wang L, Guan GF, Dai WL (2018) Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes. Appl Catal B-Environ 221:626–634

    Article  CAS  Google Scholar 

  52. Ye LQ, Tian LH, Peng TY, Zan L (2011) Synthesis of highly symmetrical BiOI single-crystal nanosheets and their 001 facet-dependent photoactivity. J Mater Chem 21(33):12479–12484

    Article  CAS  Google Scholar 

  53. Wang XJ, Wang Q, Li FT, Yang WY, Zhao Y, Hao YJ, Liu SJ (2013) Novel BiOCl-C3N4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J 234:361–371

    Article  CAS  Google Scholar 

  54. Kruk M, Asefa T, Coombs N, Jaroniec M, Ozin GA (2002) Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. J Mater Chem 12(12):3452–3457

    Article  CAS  Google Scholar 

  55. Li X, Yu JG, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45(9):2603–2636

    Article  CAS  Google Scholar 

  56. Zhang YW, Liu JH, Wu G, Chen W (2012) Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4(17):5300–5303

    Article  CAS  Google Scholar 

  57. Hu SZ, Zhang WD, Bai J, Lu G, Zhang L, Wu G (2016) Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv 6(31):25695–25702

    Article  CAS  Google Scholar 

  58. Martha S, Nashim A, Parida KM (2013) Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J Mater Chem A 1(26):7816–7824

    Article  CAS  Google Scholar 

  59. Feng X, Zhang WD, Deng H, Ni ZL, Dong F, Zhang YX (2017) Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures. J Hazard Mater 322:223–232

    Article  CAS  Google Scholar 

  60. Bellardita M, Garcia-Lopez EI, Marci G, Krivtsov I, Garcia JR, Palmisano L (2018) Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl Catal B-Environ 220:222–233

    Article  CAS  Google Scholar 

  61. Su FZ, Mathew SC, Lipner G, Fu XZ, Antonietti M, Blechert S, Wang XC (2010) mpg-C3N4-catalyzed selective oxidation of alcohols Using O2 and visible light. J Am Chem Soc 132(46):16299–16301

    Article  CAS  Google Scholar 

  62. Lima MJ, Tavares PB, Silva AMT, Silva CG, Faria JL (2017) Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts. Catal Today 287:70–77

    Article  CAS  Google Scholar 

  63. Liu Y, Zhang P, Tian BZ, Zhang JL (2015) Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl Mater Interfaces 7(25):13849–13858

    Article  CAS  Google Scholar 

  64. Li XZ, Yan XY, Lu XW, Zuo SX, Li ZY, Yao C, Ni CY (2018) Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: insight into the effect of graphene coupling. J Catal 357:59–68

    Article  Google Scholar 

  65. Han Q, Wang B, Gao J, Cheng ZH, Zhao Y, Zhang ZP, Qu LT (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2):2745–2751

    Article  CAS  Google Scholar 

  66. Xu DF, Cheng B, Cao SW, Yu JG (2015) Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B-Environ 164:380–388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21808019, 41641032, 41772240, 21407079 and 91544220), the Major Research Development Program of Jiangsu Province (BY2016030-15), the Science and Technology Bureau of Changzhou (CJ20179037), Science and Technology Project of Changzhou University (ZMF17020042), and the Science Foundation of Jiangsu University of Technology (KYY17001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxin Wang or Zhaolian Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Li, X., Ma, S. et al. Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation. J Mater Sci 54, 1275–1290 (2019). https://doi.org/10.1007/s10853-018-2880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2880-5

Keywords

Navigation