Skip to main content
Log in

Characterization of the electronic and vibrational properties of ZnxCd1−xSySe1−y (y = 0.25, 0.75) mixed crystals by a first-principles method

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

First-principles calculations are launched to characterize the electronic, thermodynamic and vibrational properties of the ZnxCd1−xS0.25Se0.75 and ZnxCd1−xS0.75Se0.25 mixed crystals (x = 0.0, 0.25, 0.50, 0.75 and 1.0). The equilibrium lattice constants and bulk moduli are deduced for the ten quaternary semiconductors. The electronic bandgaps and related electronic characteristics such as bowing are evaluated. Effect of pressure is seen, and the volume deformation potential and pressure coefficients are calculated. Strain energy calculations support suitability of this system to construct quantum devices. The vibrational frequencies at the centre of Brillouin zone are reported, and the entropic contribution in the free energy is found. Results are in good agreement with other data, wherever available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Morkoç H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large bandgap SiC, III–V nitride, and II–VI ZnSe based semiconductor device technologies. J Appl Phys 76:1363–1398

    Article  Google Scholar 

  2. Berghout A, Zaoui A, Hugel J, Ferhat M (2007) First-principles study of the energy-gap composition dependence of Zn1−xBexSe ternary alloys. Phys Rev B 75:205112(1)–205112(9)

    Article  Google Scholar 

  3. Adachi S (2009) Properties of semiconductor alloys: group IV, III–V and II–VI semiconductors. Wiley, West Sussex

    Book  Google Scholar 

  4. Hite J et al (2012) Development of periodically oriented gallium nitride for non-linear optics. Opt Mater Exp 2:1203–1208

    Article  CAS  Google Scholar 

  5. Skelton JM, Jackson AJ, Dimitrievska M, Wallace SK, Walsh A (2015) Vibrational spectra and lattice thermal conductivity of Kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4. APL Mater 3:41102(1)–41102(6)

    Article  Google Scholar 

  6. Skelton JM, Burton LA, Jackson AJ, Oba F, Parker SC, Walsh A (2017) Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Phys Chem Chem Phys 19:12452–12465

    Article  CAS  Google Scholar 

  7. El Haj Hassan F, Hashemifar SJ, Akbarzadeh H (2006) Density functional study of Zn1–xMgxSeyTe1−y quaternary semiconductor alloys. Phys Rev B 73:195202(1)–195202(6)

    Article  Google Scholar 

  8. Rowlands DA, Ernst A, Gyorffy BL, Staunton JB (2006) Density functional theory for disordered alloys with short-range order: systematic inclusion of charge-correlation effects. Phys Rev B 73:165122(1)–165122(18)

    Article  Google Scholar 

  9. Marques M, Teles LK, Ferreira LG, Scolfaro LM, Furthmuller J, Bechstedt F (2006) Statistical model applied to AxByC1−xyD quaternary alloys:Bond lengths and energy gaps of AlxGayIn1−xyX (X = As, P, or N) systems. Phys Rev B 73:235205(1)–235205(8)

    Google Scholar 

  10. Zunger A, Wei S-H, Ferreira LG, Bernard EJ (1990) Special quasirandom structures. Phys Rev Lett 65:353–356

    Article  CAS  Google Scholar 

  11. Waag A et al (1996) Large bandgap SiC, III–V nitride, and II–VI ZnSe based semiconductor device technologies. J Appl Phys 80:792–796

    Article  CAS  Google Scholar 

  12. Neumark GF, Park RM, Depuydt JM (1994) Blue–green diode lasers. Phys Today 47:6–26

    Article  Google Scholar 

  13. Nasrallah SAB, Sfina N, Bouarissa N, Said M (2006) Modelling of ZnSxSe1−x/ZnSySe1−y band offsets and QW for green–yellow applications. J Phys Condens Matter 18:3005–3016

    Article  Google Scholar 

  14. Gunshor RL, Nurmikko AV (1997) Semiconductor and semimetals, vol 44. Academic Press, New York

    Google Scholar 

  15. Okuyama H, Kishita Y, Ishibashi A (1998) Quaternary alloy Zn1–xMgxSySe1−y. Phys Rev B 57:2257–2263

    Article  CAS  Google Scholar 

  16. Feng YP, Tao KL, Li MF, Poon HC, Ong CK, Xia JB (1992) Empirical pseudopotential band structure calculation for Zn1–xCdxSySe1–y quaternary alloy. J Appl Phys 74:3948–3955

    Article  Google Scholar 

  17. Boukortt A, Abbar B, Abid H, Sehil M, Bensaad Z, Soudini B (2003) Calculation of electronic and optical properties of the quaternary alloys Zn1–xCdxSySe1–y. Mater Chem Phys 82:911–920

    Article  CAS  Google Scholar 

  18. Paliwal U, Kothari RK, Joshi KB (2012) Electronic and structural properties of ZnxCd1–xSySe1–y alloys lattice matched to GaAs and InP: an EPM study. Superlattice Microstruct 51:635–643

    Article  CAS  Google Scholar 

  19. Boukortt A, Berrah S, Hayn R, Zaoui A (2010) First-principle calculation of the optical properties of zinc–blende Zn1–xCdxSySe1–y. Phys B 405:763–769

    Article  CAS  Google Scholar 

  20. Marques M, Teles LK, Ferreira LG, Scolfaro LM, Furthmuller J, Bechstedt F (2006) Statistical model applied to AxByC1−xyD quaternary alloys: bond lengths and energy gaps of AlxGayIn1−xyX (X = As, P, or N) systems. Phys Rev B 73:235205(1)–235205(8)

    Google Scholar 

  21. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalerri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M (2006) CRYSTAL06 user’s manual. University of Torino, Torino

    Google Scholar 

  22. Evarestov RA (2007) Quantum chemistry of solids: the LCAO first principles treatment of crystals, springer series in solid state sciences, vol 153. Springer, Heidelberg

    Google Scholar 

  23. Pascale F, Zicovich-Wilson CM, Lopez Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comp Chem 25:888–897

    Article  CAS  Google Scholar 

  24. Jaffe JE, Hess AC (1993) Hartree–Fock Study of phase changes in ZnO at high pressure. Phys Rev B 48:7903–7909

    Article  CAS  Google Scholar 

  25. Dou Y, Egdell RG, Law DSL, Harrison NM, Searle BG (1998) An experimental and theoretical investigation of the electronic structure of CdO. J Phys Condens Matter 10:8447–8458

    Article  CAS  Google Scholar 

  26. Lichanot A, Aprã E, Dovesi R (1993) Quantum mechanical Hartree–Fock study of the elastic properties of Li2S and Na2S. Phys Stat Sol (b) 177:157–163

    Article  CAS  Google Scholar 

  27. http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for Brillonin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  30. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244–247

    Article  CAS  Google Scholar 

  31. Homann T, Hotje U, Binnewies M, Borger A, Becker KD, Bredow T (2006) Composition-dependent bandgap in ZnSxSe1−x: a combined experimental and theoretical study. Solid State Sci 8:44–49

    Article  CAS  Google Scholar 

  32. Bendaif S, Boumaza A, Nemiri O, Boubendira K, Meradji H, Ghemid S, Haj Hassan F (2015) First-principle calculations of the structural, electronic, thermodynamic and thermal properties of ZnSSe ternary alloys. Bull Mater Sci 38:365–372

    Article  CAS  Google Scholar 

  33. Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24

    Article  CAS  Google Scholar 

  34. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys 5:17–26

    Article  CAS  Google Scholar 

  35. Martienssen W, Warlimont H (eds) (2005) Handbook of condensed matter and materials data. Springer, Heidelberg

    Google Scholar 

  36. Deng Z, Yan H, Liu Y (2009) Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J Am Chem Soc 131:17744–17745

    Article  CAS  Google Scholar 

  37. Fuchs F, Furthmuller J, Bechsted F, Shishkin M, Kresse G (2007) Quasiparticle band structure based on a generalized Kohn–Sham scheme. Phys Rev B 76:115109(1)–115109(8)

    Article  Google Scholar 

  38. Bechstedt F, Fuchs F, Kresse G (2009) Ab-initio theory of semiconductor band structures: new developments and progress. Phys Status Solidi B 246:1877–1892

    Article  CAS  Google Scholar 

  39. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659

    Article  CAS  Google Scholar 

  40. Chen S, Gong XG, Walsh A, Wei SH (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys Rev B 79:165211(1)–165211(10)

    Google Scholar 

  41. Wei SH, Zunger A (1999) Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends. Phys Rev B 60:5404–5411

    Article  CAS  Google Scholar 

  42. Tamargo MC (2002) II–VI semiconductor materials and their applications. Taylor & Francis, New York, pp 113–170

    Google Scholar 

  43. Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverrıa J, Cremades E, Barragan F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838

    Article  Google Scholar 

  44. Moon CY, Wei SH, Zhu YZ, Chen GD (2006) Band-gap bowing coefficients in large size-mismatched II–VI alloys: first-principles calculations. Phys Rev B 74:233202(1)–233202(4)

    Google Scholar 

  45. Freitas Neto ES, da Silva SW, Morais PC, Vasileveskiy MI, Pereira-da-Silva MA, Dantas NO (2011) Resonant Raman scattering in CdSxSe1−x nanocrystals: effects of phonon confinement, composition, and elastic strain. J Raman Spectrosc 42:1660–1669

    Article  CAS  Google Scholar 

  46. Scamarcio G, Lugara M, Manno D (1992) Size-dependent lattice contraction in CdS1−xSex nanocrystals embedded in glass observed by Raman scattering. Phys Rev B 45:13792–13795

    Article  CAS  Google Scholar 

  47. Ferraro JR, Mitra SS, Postmus C, Hoskins C, Siwiec EC (1970) Optical phonons of ZnS1−xSex and CdS1−xSex mixed crystals: pressure effects. Appl Spectrosc 24:187–192

    Article  CAS  Google Scholar 

  48. Beserman R, Zigone M, Drexel W, Marti C (1976) Density of states determination of mixed semiconductors by neutron diffraction. Solid State Commun 18:419–421

    Article  CAS  Google Scholar 

  49. Schmeltzer D, Beserman R (1981) Anharmonic interaction in mixed ZnS1−zSez crystals. J Phys C Solid State Phys 14:5003–5009

    Article  CAS  Google Scholar 

  50. Basak T et al (2014) Vibrational properties and phonon anharmonicity in ZnS1−xSex: inelastic neutron scattering, X-ray diffraction measurements and lattice dynamical studies. Physica B 433:149–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Special Assistance Program of the UGC, New Delhi. Financial support received through Rashtriya Uchchhatar Shiksha Abhiyan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliwal, U., Sharma, G. & Joshi, K.B. Characterization of the electronic and vibrational properties of ZnxCd1−xSySe1−y (y = 0.25, 0.75) mixed crystals by a first-principles method. J Mater Sci 54, 1382–1394 (2019). https://doi.org/10.1007/s10853-018-2875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2875-2

Keywords

Navigation