Skip to main content
Log in

The effect of fast and slow surface states on photoelectrochemical performance of hematite photoanodes fabricated by electrodeposition and hydrothermal methods

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hematite films prepared by electrodeposition (ED) and hydrothermal (HT) methods have similar nanorods morphology and the same length. However, the hematite prepared by HT method has higher photocurrent density and negative shift of onset potential. The samples are systematically characterized by scanning electron microscopy, UV–Vis spectra, X-ray diffractometry and photoelectrochemical measurements. The results reveal that the enhanced photoelectrochemical (PEC) performance of HT hematite is attributed to the superior surface charge injection efficiency, which is caused by a slower surface recombination rate rather than a more catalytically active hematite surface. And the slower surface recombination rate can be attributed to the absence of the slow surface states CSS2. This work provides an in-depth understanding of the reasons for the different PEC performance of hematite photoanodes fabricated by ED and HT methods, which is of certain significance in guiding the modification of hematite photoanodes prepared by the two typical routes in PEC water splitting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductorelectrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Daghrir R, Drogui P, Khakani MAE (2013) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31

    Article  CAS  Google Scholar 

  3. Li H, Zhou Q, Gao Y, Gui X, Yang L, Du M, Shi E, Shi J, Cao A, Fang Y (2015) Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res 8:900–906

    Article  CAS  Google Scholar 

  4. Wang T, Jin B, Jiao Z, Lu G, Ye J, Bi Y (2015) Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowirearrays. Chem Commun 51:2103–2106

    Article  CAS  Google Scholar 

  5. Kim JK, Bae S, Kim W, Jeong MJ, Lee SH, Lee CL, Choi WK, Hwang JY, Park JH, Son DI (2015) Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantumdots. Nano Energy 13:258–266

    Article  CAS  Google Scholar 

  6. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4:432–449

    Article  CAS  Google Scholar 

  7. Kumar P, Sharma P, Shrivastav R, Dass S, Satsangi VR (2011) Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int J Hydrogen Energy 36:2777–2784

    Article  CAS  Google Scholar 

  8. Aleksić OS, Vasiljević ZŽ, Vujković M, Nikolić M, Labus N, Luković MD, Nikolić MV (2017) Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. J Mater Sci 52:5938–5953. https://doi.org/10.1007/s10853-017-0830-2

    Article  CAS  Google Scholar 

  9. Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun JH, Du A, Liu G, Wang L (2016) Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24:94–102

    Article  CAS  Google Scholar 

  10. Jiang T, Xie T, Yang W, Chen L, Fan H, Wang D (2013) Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624

    Article  CAS  Google Scholar 

  11. Wang S, Chen P, Yun JH, Hu Y, Wang L (2017) An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed 129:8620–8624

    Article  Google Scholar 

  12. Zhen C, Chen R, Wang L, Liu G, Cheng HM (2016) Tantalum (oxy) nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4:2783–2800

    Article  CAS  Google Scholar 

  13. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achievingsustainability? Chem Rev 116:7159–7329

    Article  CAS  Google Scholar 

  14. Zhang H, Nai J, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107

    Article  CAS  Google Scholar 

  15. Kennedy JH, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709–714

    Article  CAS  Google Scholar 

  16. Itoh K, Bockris JM (1984) Stacked thin-film photoelectrode using iron oxide. J Appl Phys 56:874–876

    Article  CAS  Google Scholar 

  17. Itoh K, Bockris JM (1984) Thin film photoelectrochemistry: iron oxide. J Electrochem Soc 131:1266–1271

    Article  CAS  Google Scholar 

  18. Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of iron (III) oxide. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 79:2027–2041

    CAS  Google Scholar 

  19. Morin FJ (1951) Electrical properties of α-Fe2O3 and α-Fe2O3 containing titanium. Phys Rev 83:1005

    Article  CAS  Google Scholar 

  20. Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist SE (2002) Aqueous photoelectrochemistry of hematite nanorod array. Sol Energy Mater Sol Cells 71:231–243

    Article  CAS  Google Scholar 

  21. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem 122:6549–6552

    Article  Google Scholar 

  22. Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401

    Article  CAS  Google Scholar 

  23. Glasscock JA, Barnes PR, Plumb IC, Savvides N (2007) Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C 111:16477–16488

    Article  CAS  Google Scholar 

  24. Duret A, Grätzel M (2005) Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191

    Article  CAS  Google Scholar 

  25. Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160

    Article  CAS  Google Scholar 

  26. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

    Article  CAS  Google Scholar 

  27. Shen S, Li M, Guo L, Jiang J, Mao SS (2014) Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting. J Colloid Interface Sci 427:20–24

    Article  CAS  Google Scholar 

  28. Li L, Liu C, Qiu Y, Mitsuzak N, Chen Z (2017) The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. J Alloy Compd 696:980–987

    Article  CAS  Google Scholar 

  29. Mohapatra SK, John SE, Banerjee S, Misra M (2009) Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 21:3048–3055

    Article  CAS  Google Scholar 

  30. Spray RL, Choi KS (2009) Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chem Mater 21:3701–3709

    Article  CAS  Google Scholar 

  31. Zhang P, Kleiman-Shwarsctein A, Hu YS, Lefton J, Sharma S, Forman AJ, McFarland E (2011) Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ Sci 4:1020–1028

    Article  CAS  Google Scholar 

  32. Jiao S, Xu L, Hu K, Li J, Gao S, Xu D (2009) Morphological control of α-FeOOH nanostructures by electrodeposition. J Phys Chem C 114:269–273

    Article  Google Scholar 

  33. Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W (2009) Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3:3749–3761

    Article  CAS  Google Scholar 

  34. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556

    Article  CAS  Google Scholar 

  35. Le Formal F, Grätzel M, Sivula K (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–1107

    Article  Google Scholar 

  36. Herrera FV, Grez P, Schrebler R, Ballesteros LA, Muñoz E, Córdova R, Dalchiele EA (2010) Preparation and photoelectrochemical characterization of porphyrin-sensitized α-Fe2O3 thin films. J Electrochem Soc 157:D302–D308

    Article  CAS  Google Scholar 

  37. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4:958–964

    Article  CAS  Google Scholar 

  38. Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions, Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677

    Article  CAS  Google Scholar 

  39. Uosaki K, Kita H (1983) Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott–Schottky plot. J Electrochem Soc 130:895–897

    Article  CAS  Google Scholar 

  40. Wijayantha KU, Saremi-Yarahmadi S, Peter LM (2011) Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 13:5264–5270

    Article  CAS  Google Scholar 

  41. Zandi O, Schon AR, Hajibabaei H, Hamann TW (2016) Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem Mater 28:765–771

    Article  CAS  Google Scholar 

  42. Bassi PS, Xianglin L, Fang Y, Loo JSC, Barber J, Wong LH (2016) Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting. Phys Chem Chem Phys 18:30370–30378

    Article  CAS  Google Scholar 

  43. Bertoluzzi L, Bisquert J (2012) Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J Phys Chem Lett 3:2517–2522

    Article  CAS  Google Scholar 

  44. Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl Mater Interfaces 8:5280–5289

    Article  CAS  Google Scholar 

  45. Zhong M, Hisatomi T, Kuang Y, Zhao J, Liu M, Iwase A (2015) Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J Am Chem Soc 137:5053–5060

    Article  CAS  Google Scholar 

  46. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open circuit voltage decay measurements. ChemPhysChem 4:859–864

    Article  CAS  Google Scholar 

  47. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 5:7626–7636

    Article  CAS  Google Scholar 

  48. Zandi O, Hamann T (2014) Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett 5:1522–1526

    Article  CAS  Google Scholar 

  49. Allongue P, Cachet H (1985) Band-edge shift and surface charges at illuminated n-GaAs/aqueous electrolyte junctions surface-state analysis and simulation of their occupation rate. J Electrochem Soc 132:45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 51574047, 51702025), the Natural Science Foundation of Jiangsu Provence (No. BK20160277), and Fundamental Research Funds of Changzhou Vocational Institute of Engineering (No. 11130100116009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, H., Liu, C. et al. The effect of fast and slow surface states on photoelectrochemical performance of hematite photoanodes fabricated by electrodeposition and hydrothermal methods. J Mater Sci 54, 659–670 (2019). https://doi.org/10.1007/s10853-018-2862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2862-7

Keywords

Navigation