Thermal expansion of natural mantle spinel using in situ synchrotron X-ray powder diffraction


We used in situ measurements of X-ray diffraction patterns in a cubic multi-anvil press at pressures up to 3 GPa and at 500–1300 K to examine thermal expansion and its pressure dependence in (Mg0.73Fe0.27)(Cr0.56Al1.44)O4 spinel separated from a mantle-derived xenolith. Thermal expansion of mantle minerals is considerably important to examine thermodynamic properties of mantle. Nevertheless, no report of the relevant literature describes a study investigating the thermal expansion of natural mantle spinel under the P–T conditions presented above. Cell volume of the natural spinel increased concomitantly with increasing temperature, enabling us to estimate thermal expansion coefficients. The relation between the cell volume and pressure at 700 K is distinct in slope from those of adjacent temperature, perhaps because of the transition of spinel from order to disorder. Pressure dependence of thermal expansion coefficients was not identified. Reports of some earlier studies have described various values of thermal expansion coefficients of MgAl2O4: αmean = 1.70–2.94 × 10−5 K−1. The obtained mean thermal expansion coefficient (2.66 × 10−5) is slightly higher than the reported values. This slight difference might be inferred as reflecting the effects of the presence of Fe and Cr, respectively, at sites A and B.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Miller C, Richter W (1982) Solid and fluid phases in lherzolite and pyroxenite inclusions from the Hoggar, central Sahara. Geochem J 16:263–277

    CAS  Article  Google Scholar 

  2. 2

    Roedder E (1983) Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine. Earth Planet Sci Lett 66:369–379

    CAS  Article  Google Scholar 

  3. 3

    Yamamoto J, Korenaga J, Hirano N, Kagi H (2014) Melt-rich lithosphere-asthenosphere boundary inferred from petit-spot volcanoes. Geology 42:967–970

    Article  Google Scholar 

  4. 4

    De Vivo B, Frezzotti ML, Lima A, Trigila R (1988) Spinel lherzolite nodules from Oahu island (Hawaii): a fluid inclusion study. Bull Minéral 111:307–319

    Google Scholar 

  5. 5

    Schwab RG, Freisleben B (1988) Fluid CO2 inclusions in olivine and pyroxene and their behaviour under high pressure and temperature conditions. Bull Minéral 111:297–306

    CAS  Google Scholar 

  6. 6

    Frezzotti ML, Burke EAJ, DeVivo B et al (1992) Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur J Mineral 4:1137–1153

    CAS  Article  Google Scholar 

  7. 7

    Yamamoto J, Kagi H, Kaneoka I et al (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth Planet Sci Lett 198:511–519

    CAS  Article  Google Scholar 

  8. 8

    Yamamoto J, Kagi H, Kawakami Y et al (2007) Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth Planet Sci Lett 253:369–377

    CAS  Article  Google Scholar 

  9. 9

    Sapienza G, Hilton DR, Scribano V (2005) Helium isotopes in peridotite mineral phases from hyblean plateau xenoliths (south-eastern Sicily, Italy). Chem Geol 219:115–129

    CAS  Article  Google Scholar 

  10. 10

    Andersen T, Neumann E-R (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320

    CAS  Article  Google Scholar 

  11. 11

    Yamamoto J, Ando J, Kagi H et al (2008) In-situ strength measurements of natural upper-mantle minerals. Phys Chem Minerals 35:249–257

    CAS  Article  Google Scholar 

  12. 12

    Zhang Y (1998) Mechanical and phase equilibria in inclusion–host systems. Earth Planet. Sci. Lett. 157:209–222

    CAS  Article  Google Scholar 

  13. 13

    Ono K, Harada Y, Yoneda A et al (2018) Determination of elastic constants of single crystal chromian spinel by resonant ultrasound spectroscopy and implications for fluid inclusion geobarometry. Phys Chem Min 45:237–247

    CAS  Article  Google Scholar 

  14. 14

    Katsura T, Funakoshi K, Kubo A et al (2004) A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk.II’. Phys Earth Planet Inter 143:497–506

    Article  Google Scholar 

  15. 15

    Utsumi W, Funakoshi K, Urakawa S et al (1998) SPring-8 Beamlines for High Pressure Science with Multi-Anvil Apparatus. Rev High Pressure Sci Technol 7:1484–1486

    CAS  Article  Google Scholar 

  16. 16

    Irifune T (2002) Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Min Mag 66:769–790

    CAS  Article  Google Scholar 

  17. 17

    Tange Y, Nishihara Y, Tsuchiya T (2009) Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys Res 114:B03208

    Google Scholar 

  18. 18

    Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Pressure Science and Technology 20:269–276

    Article  Google Scholar 

  19. 19

    Suzuki I, Kumazawa M (1980) Anomalous thermal expansion in spinel MgAl2O4. Phys Chem Min 5:279–284

    CAS  Google Scholar 

  20. 20

    Yamanaka T, Takeuchi Y (1983) Order–disorder transition in MgAl2O4 spinel at high temperatures up to 1700 C. Z Kristallogr 165:65–78

    CAS  Article  Google Scholar 

  21. 21

    Méducin F, Redfern SAT, Le Godec Y et al (2004) Study of cation order disorder in MgAl2O4 spinel by in situ neutron diffraction up to. 1600 K and 3.2 GPa. Am Mineral 89:981–986

    Article  Google Scholar 

  22. 22

    Fan D, Zhou W, Liu C et al (2008) Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K. J Mate Sci 43:5546–5550.

    CAS  Article  Google Scholar 

  23. 23

    Fiquet G, Richer P, Montagnac G (1999) High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys Chem Min 27:103–111

    CAS  Article  Google Scholar 

  24. 24

    Saxena SK, Shen G (1992) Assessment of thermophysical and thermochemical data in some oxides and silicates. J Geophys Res 97:19813–19825

    Article  Google Scholar 

  25. 25

    Singh HP, Simmons G, McFarlin PF (1975) Thermal expansion of natural spinel, ferroan gahnite, magnesiochromite, and synthetic spinel. Acta Cryst A31:820–822

    CAS  Article  Google Scholar 

  26. 26

    Kaprálik I (1969) Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4. Chem zvesti 23:665–670

    Google Scholar 

  27. 27

    Skimmer BJ (1966) Handbook of physical constants. Geol Soc Am Mem 97:78–96

    Google Scholar 

  28. 28

    Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer, New York

    Google Scholar 

  29. 29

    Chang ZP, Barsch GR (1973) Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel. J Geophys Res 78:2418–2433

    CAS  Article  Google Scholar 

  30. 30

    Yoneda A (1990) Pressure derivatives of elastic constants of single crystal MgO and MgAl2O4. J Phys Earth 38:19–55

    Article  Google Scholar 

  31. 31

    Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:7–13

    Article  Google Scholar 

  32. 32

    Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Min 4:105–113

    CAS  Article  Google Scholar 

  33. 33

    Yamamoto J, Kagi H (2008) Application of micro-Raman densimeter for CO2 fluid inclusions: a probe for elastic strengths of mantle minerals. Eur J Mineral 20:529–535

    CAS  Article  Google Scholar 

  34. 34

    Yamamoto J, Otsuka K, Ohfuji H et al (2011) Retentivity of CO2 in fluid inclusions in mantle minerals. Eur J Mineral 23:805–815

    CAS  Article  Google Scholar 

Download references


We appreciate Wei S., Liu C., and colleagues at Okayama University for their help in obtaining diffraction data. Synchrotron radiation experiments were performed at the BL04B1 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2017B1175). This study was supported by Grants-in-Aid for Scientific Research (Nos. 23654160, 25287139, 26610136, 16H04079, and 16J0472207) from the Japan Society for the Promotion of Science.

Author information



Corresponding author

Correspondence to J. Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, J., Yoshino, T., Yamazaki, D. et al. Thermal expansion of natural mantle spinel using in situ synchrotron X-ray powder diffraction. J Mater Sci 54, 139–148 (2019).

Download citation


  • Fluid Inclusions
  • Mantle Xenoliths
  • Chrome Spinel
  • Synthetic Spinel
  • Present Spinel