Skip to main content
Log in

High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acid-resistant membrane has an important application prospect in the field of industrial wastewater treatment. Polysulfonamide (PSA) filtration membrane possessing good stability in acidic condition was often hampered for application due to the poor performance by the state-of-the-art interfacial polymerization (IP) preparation method. Herein, a spinning-assist multilayer interfacial polymerization (sMIP) method was devised and employed for the fabrication of a PSA thin-film composite (TFC) membrane from piperazine (PIP) and 2,4,6-tris(chlorosulfonyl) phenol (TCSP). Membrane fabricated with 5 layers by sMIP method exhibited greater than 98% rejection rate for Na2SO4 and MgSO4 and outperformed the control IP group by ~ 147% enhanced water permeance and a magnitude greater permselectivity due to a reduced active layer thickness. Compared with polyamide membranes, the PSA TFC membrane exhibited better stability toward acid through a high-temperature treatment in a 20% H2SO4 aqueous solution. For a CuSO4 and H2SO4 mixed solution filtration, the PSA membrane exhibited good permselectivity with CuSO4 rejection of 78% and H2SO4 rejection of 8% at a permeate flux of 13.98 L m−2 h−1. These results have demonstrated that the sMIP method provides an effective way to fabricate polysulfonamide membrane with excellent salt rejection as well as appreciable water permeance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348. https://doi.org/10.1016/j.watres.2009.03.010

    Article  CAS  Google Scholar 

  2. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122(3):435–445. https://doi.org/10.1016/S0269-7491(02)00308-1

    Article  Google Scholar 

  3. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1(5):16018. https://doi.org/10.1038/natrevmats.2016.18

    Article  CAS  Google Scholar 

  4. Platt S, Nyström M, Bottino A, Capannelli G (2004) Stability of NF membranes under extreme acidic conditions. J Membr Sci 239(1):91–103. https://doi.org/10.1016/j.memsci.2003.09.030

    Article  CAS  Google Scholar 

  5. Agboola O, Schoeman JJ, Maree J, Mbaya R, Kolesnikov A (2012) Performance of an acid stable nanofiltration membrane for nickel removal from aqueous solutions: effects of concentration, solution pH and ionic strength. WIT Trans Ecol Environ 163:415–424. https://doi.org/10.2495/WM120371

    Article  CAS  Google Scholar 

  6. Gomes S, Cavaco SA, Quina MJ, Gando-Ferreira LM (2010) Nanofiltration process for separating Cr(III) from acid solutions: experimental and modelling analysis. Desalination 254(1–3):80–89. https://doi.org/10.1016/j.desal.2009.12.010

    Article  CAS  Google Scholar 

  7. Tanninen J, Mänttäri M, Nyström M (2006) Nanofiltration of concentrated acidic copper sulphate solutions. Desalination 189(1–3):92–96. https://doi.org/10.1016/j.desal.2005.06.017

    Article  CAS  Google Scholar 

  8. Tanninen J (2004) Long-term acid resistance and selectivity of NF membranes in very acidic conditions. J Membr Sci 240(1–2):11–18. https://doi.org/10.1016/j.memsci.2004.04.006

    Article  CAS  Google Scholar 

  9. Ricci BC, Ferreira CD, Marques LS, Martins SS, Reis BG, Amaral MCS (2017) Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent. Sep Purif Technol 174:301–311. https://doi.org/10.1016/j.seppur.2016.11.007

    Article  CAS  Google Scholar 

  10. Visser TJK, Modise SJ, Krieg HM, Keizer K (2001) The removal of acid sulphate pollution by nanofiltration. Desalination 140(1):79–86. https://doi.org/10.1016/S0011-9164(01)00356-3

    Article  CAS  Google Scholar 

  11. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Pang S, Wang X, Yao J, Cui G (2013) A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery. J Electrochem Soc 160(6):A769–A774. https://doi.org/10.1149/2.043306jes

    Article  CAS  Google Scholar 

  12. Zhang J, Wen H, Yue L, Chai J, Ma J, Hu P, Ding G, Wang Q, Liu Z, Cui G, Chen L (2017) In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small 13(2):1601530. https://doi.org/10.1002/smll.201601530

    Article  CAS  Google Scholar 

  13. Baxter NJ, Rigoreau LJM, Laws AP, Page MI (2000) Reactivity and mechanism in the hydrolysis of β-Sultams. J Am Chem Soc 122(14):3375–3385. https://doi.org/10.1021/ja994293b

    Article  CAS  Google Scholar 

  14. Searles S, Nukina S (1959) Cleavage And Rearrangement Of Sulfonamides. Chem Rev 59(6):1077–1103. https://doi.org/10.1021/cr50030a004

    Article  CAS  Google Scholar 

  15. Kurth CJ, Kloos SD, Peschl JA, Hodgins LT (2001) US7138058, Acid stable membranes for nanofiltration

  16. Liu M, Yao G, Cheng Q, Ma M, Yu S, Gao C (2012) Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP). J Membr Sci 415–416:122–131. https://doi.org/10.1016/j.memsci.2012.04.043

    Article  CAS  Google Scholar 

  17. Hoseinpour H, Peyravi M, Nozad A, Jahanshahi M (2016) Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes. J Taiwan Inst Chem Eng 67:453–466. https://doi.org/10.1016/j.jtice.2016.07.039

    Article  CAS  Google Scholar 

  18. Chai G-Y, Krantz WB (1994) Formation and characterization of polyamide membranes via interfacial polymerization. J Membr Sci 93(2):175–192. https://doi.org/10.1016/0376-7388(94)80006-5

    Article  CAS  Google Scholar 

  19. Karan S, Jiang Z, Livingston AG (2015) Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241):1347–1351. https://doi.org/10.1126/science.aaa5058

    Article  CAS  Google Scholar 

  20. Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG (2016) Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 15(7):760–767. https://doi.org/10.1038/nmat4638

    Article  CAS  Google Scholar 

  21. Cadotte J E (1981) US4277344. Interfacially synthesized reverse osmosis membrane

  22. Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD (2017) Surface modification of water purification membranes. Angew Chem Int Ed Engl 56(17):4662–4711. https://doi.org/10.1002/anie.201601509

    Article  CAS  Google Scholar 

  23. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456. https://doi.org/10.1016/j.polymer.2016.07.085

    Article  CAS  Google Scholar 

  24. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343):eaab0530. https://doi.org/10.1126/science.aab0530

    Article  CAS  Google Scholar 

  25. Putkonen M, Harjuoja J, Sajavaara T, Niinisto L (2007) Atomic layer deposition of polyimide thin films. J Mater Chem 17(7):664–669. https://doi.org/10.1039/B612823H

    Article  CAS  Google Scholar 

  26. Choi W, Gu J-E, Park S-H, Kim S, Bang J, Baek K-Y, Park B, Lee JS, Chan EP, Lee J-H (2015) Tailor-made polyamide membranes for water desalination. ACS Nano 9(1):345–355. https://doi.org/10.1021/nn505318v

    Article  CAS  Google Scholar 

  27. Gu JE, Lee S, Stafford CM, Lee JS, Choi W, Kim BY, Baek KY, Chan EP, Chung JY, Bang J, Lee JH (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25(34):4778–4782. https://doi.org/10.1002/adma.201302030

    Article  CAS  Google Scholar 

  28. Johnson PM, Yoon J, Kelly JY, Howarter JA, Stafford CM (2012) Molecular layer-by-layer deposition of highly crosslinked polyamide films. J Polym Sci Part B Polym Phys 50(3):168–173. https://doi.org/10.1002/polb.23002

    Article  CAS  Google Scholar 

  29. Choi W, Jeon S, Kwon SJ, Park H, Park Y-I, Nam S-E, Lee PS, Lee JS, Choi J, Hong S, Chan EP, Lee J-H (2017) Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. J Membr Sci 527:121–128. https://doi.org/10.1016/j.memsci.2016.12.066

    Article  CAS  Google Scholar 

  30. Song X, Qi S, Tang CY, Gao C (2017) Ultra-thin, multi-layered polyamide membranes: synthesis and characterization. J Membr Sci 540:10–18. https://doi.org/10.1016/j.memsci.2017.06.016

    Article  CAS  Google Scholar 

  31. Freger V (2005) Kinetics of film formation by interfacial polycondensation. Langmuir 21(5):1884–1894. https://doi.org/10.1021/la048085v

    Article  CAS  Google Scholar 

  32. Wadekar SS, Vidic RD (2017) Influence of active layer on separation potentials of nanofiltration membranes for inorganic ions. Environ Sci Technol 51(10):5658–5665. https://doi.org/10.1021/acs.est.6b05973

    Article  CAS  Google Scholar 

  33. Boiko VN, Filatov AA, Yagupolskii YL, Tyrra W, Naumann D, Pantenburg I, Fischer HTM, Schulz F (2011) A convenient synthetic route to 2,4,6-tris(chlorosulfonyl)- and 2,4,6-tris(fluorosulfonyl)phenol, aniline and chlorobenzene. J Fluor Chem 132(12):1219–1226. https://doi.org/10.1016/j.jfluchem.2011.06.045

    Article  CAS  Google Scholar 

  34. Freger V, Bottino A, Capannelli G, Perry M, Gitis V, Belfer S (2005) Characterization of novel acid-stable NF membranes before and after exposure to acid using ATR-FTIR, TEM and AFM. J Membr Sci 256:134–142. https://doi.org/10.1016/j.memsci.2005.02.014

    Article  CAS  Google Scholar 

  35. Siow KS, Britcher L, Kumar S, Griesser HJ (2009) Sulfonated surfaces by sulfur dioxide plasma surface treatment of plasma polymer films. Plasma Processes Polym 6(9):583–592. https://doi.org/10.1002/ppap.200950004

    Article  CAS  Google Scholar 

  36. Kim SH, Kwak S-Y, Suzuki T (2005) Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. Environ Sci Technol 39(6):1764–1770. https://doi.org/10.1021/es049453k

    Article  CAS  Google Scholar 

  37. Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39(1):1–42. https://doi.org/10.1016/j.progpolymsci.2013.07.001

    Article  CAS  Google Scholar 

  38. Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE (2011) Water permeability and water/salt selectivity tradeoff in polymers for desalination. J Membr Sci 369(1–2):130–138. https://doi.org/10.1016/j.memsci.2010.11.054

    Article  CAS  Google Scholar 

  39. Peeters JMM, Boom JP, Mulder MHV, Strathmann H (1998) Retention measurements of nanofiltration membranes with electrolyte solutions. J Membr Sci 145(2):199–209. https://doi.org/10.1016/S0376-7388(98)00079-9

    Article  CAS  Google Scholar 

  40. Schäfer AI, Fane AG, Waite TD (2005) Nanofiltration: principles and applications. Elsevier, Amsterdam

    Google Scholar 

  41. Sun J, Zhang L, Xie B, Fan L, Yu S (2013) Separation efficiency and stability of thin-film composite nanofiltration membranes in long-term filtration of copper sulphate and sulphuric acid mixture. Desalination Water Treatment 53(7):1822–1833. https://doi.org/10.1080/19443994.2013.860629

    Article  CAS  Google Scholar 

  42. Aharoni SM (1992) The solubility parameters of aromatic polyamides. J Appl Polym Sci 45(5):813–817. https://doi.org/10.1002/app.1992.070450507

    Article  CAS  Google Scholar 

  43. Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. Desalination 242(1):149–167. https://doi.org/10.1016/j.desal.2008.04.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities (No. 15CX02015A, 16CX05009A, 18CX05006A), the National Natural Science Foundation of China (Grant No. 21502227), the Province Key Research and Development Program of Shandong (No. 2016GSF115032), Postdoctoral application Program of Qingdao (No. T1604013), the State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University, No. M1-201601), and State Key Laboratory of Heavy Oil Processing SLKZZ-2017009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Yuan, Q. Jason Niu or Jianqiang Meng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Yuan, T., Dong, W. et al. High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization. J Mater Sci 54, 886–900 (2019). https://doi.org/10.1007/s10853-018-2847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2847-6

Keywords

Navigation