Skip to main content

Advertisement

Log in

3D printing dental composite resins with sustaining antibacterial ability

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

3D printing brought revolutionary changes to many industries, especially in the field of dentistry. However, dental restoration has a high incidence of secondary caries when patients wearing in the oral cavity. In this paper, we developed an antibacterial stereolithography resins (SLR) for digital light processing 3D printing by adding Ag-carrying halloysite nanotubes (Ag-HNT). The morphology and component of Ag-HNT were characterized by transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy. The uniform distribution of Ag-HNT in SLR was investigated by TEM. The curing curve showed that photo-curable behavior of the composite resins was hardly affected by the addition of Ag-HNT. Three-point bending test indicated that bending strength of the samples increased by 25% after addition of 3% Ag-HNT. A continuous antibacterial ability of cured Ag-HNT/SLR was evidenced by culturing streptococcus mutans in the leaching solution of resins. L929 cells were cultured in the leaching solution for 48 h, and the results of CCK-8 assay indicated that the composite resins had good cytocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J (2011) Additive CAD/CAM process for dental prostheses. J Prosthodont 20:93–96

    Article  Google Scholar 

  2. Lebon N, Tapie L, Duret F, Attal JP (2016) Understanding dental CAD/CAM for restorations—dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines. Int J Comput Dent 19:115–134

    Google Scholar 

  3. van Noort R (2012) The future of dental devices is digital. Dent Mater 28:3–12

    Article  Google Scholar 

  4. Braian M, Jimbo R, Wennerberg A (2016) Production tolerance of additive manufactured polymeric objects for clinical applications. Dent Mater 32:853–861

    Article  CAS  Google Scholar 

  5. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529

    Article  CAS  Google Scholar 

  6. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64

    Article  CAS  Google Scholar 

  7. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ (2009) A review of dental implants and infection. J Hosp Infect 72:104–110

    Article  CAS  Google Scholar 

  8. Wall MT, Nasseh K, Vujicic M (2014) US dental spending remains flat through 2012. Available from https://www.ada.org/en/~/media/ADA/Science%20and%20Research/HPI/Files/HPIBrief_0114_1

  9. Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ (2014) Orthodontic treatment with fixed appliances and biofilm formation—a potential public health threat? Clin Oral Investig 18:1711–1718

    Article  Google Scholar 

  10. Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, van der Mei HC, Busscher HJ, Herrmann A, Ren YJ (2015) 3D-printable antimicrobial composite resins. Adv Funct Mater 25:6756–6767

    Article  CAS  Google Scholar 

  11. Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J (1996) Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dent Mater 12:227–229

    Article  CAS  Google Scholar 

  12. Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9:357–358

    Article  CAS  Google Scholar 

  13. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) Preparation of antibacterial silver-doped silica glass microspheres. Key Eng Mater 240–242:266–274

    Google Scholar 

  14. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42

    Article  CAS  Google Scholar 

  15. Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42:1251–1255

    Article  CAS  Google Scholar 

  16. Yuan P, Tan DY, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93

    Article  Google Scholar 

  17. Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  18. Veerabadran NG, Price RR, Lvov YM (2007) Clay nanotubes for encapsulation and sustained release of drugs. NANO 2:115–120

    Article  CAS  Google Scholar 

  19. Abdullayev E, Sakakibara K, Okamoto K, Wei WB, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Interfaces 3:4040–4046

    Article  CAS  Google Scholar 

  20. Liska R, Schuster M, Infuhr R, Tureeek C, Fritscher C, Seidl B, Schmidt V, Kuna L, Haase A, Varga F, Lichtenegger H, Stampfl J (2007) Photopolymers for rapid prototyping. J Coat Technol Res 4:505–510

    Article  CAS  Google Scholar 

  21. Li YQ, Zhang YM, Zhang YF, Liu M, Zhang FC, Wang L (2017) Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J Therm Anal Calorim 129:1333–1339

    Article  CAS  Google Scholar 

  22. Weng ZX, Zhou Y, Lin WX, Senthil T, Wu LX (2016) Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos Part A Appl Sci Manuf 88:234–242

    Article  CAS  Google Scholar 

  23. Liu MX, Guo BC, Du ML, Lei YD, Jia DM (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15:205–212

    Article  CAS  Google Scholar 

  24. Chen Q, Zhao Y, Wu WD, Xu T, Fong H (2012) Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent Mater 28:1071–1079

    Article  Google Scholar 

  25. Lecouvet B, Horion J, D’Haese C, Bailly C, Nysten B (2013) Elastic modulus of halloysite nanotubes. Nanotechnology 24:105704

    Article  CAS  Google Scholar 

  26. Lu D, Chen HB, Wu JS, Chan CM (2011) Direct measurements of the Young’s modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage. J Nanosci Nanotechnol 11:7789–7793

    Article  CAS  Google Scholar 

  27. Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114:11358–11363

    Article  CAS  Google Scholar 

  28. Du ML, Guo BC, Jia DM (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    CAS  Google Scholar 

  29. Hansel C, Leyhausen G, Mai UEM, Geurtsen W (1998) Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res 77:60–67

    Article  CAS  Google Scholar 

  30. Dawes C (2008) Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc 139(Suppl):18S–24S

    Article  Google Scholar 

  31. Anonymous (2011) Guidelines for drinking water quality. Eng Sanit Ambient 16:04–05

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China 2017YFC1103402), National Natural Science Foundation of China (51673071), Guangdong Scientific and Technological Project (2016B090916004, 2014B090907004, 2016B090918040), Natural Science Foundation of Guangdong Province (2016A030313509), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa, L., Kaiwu, L., Shenggui, C. et al. 3D printing dental composite resins with sustaining antibacterial ability. J Mater Sci 54, 3309–3318 (2019). https://doi.org/10.1007/s10853-018-2801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2801-7

Keywords