Skip to main content
Log in

Preparation and photothermal therapy of hyaluronic acid–conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites are fabricated with poly (glycidyl methacrylate) (PGMA) microspheres, Au nanoparticles and hyaluronic acid (HA) for accurate photothermal therapy. PGMA microspheres are synthesized by emulsifier-free emulsion polymerization followed by amination. The adsorption of gold seeds is successfully achieved through chelation. PGMA@Au-4 nanocomposites (abbreviated as PGMA@Au) are obtained after gold seed growth. The temperature of the 0.3 mg mL−1 PGMA@Au dispersion increases by 10.6 °C when irradiated with a near-infrared (NIR) laser for 5 min. In order to reduce side effects in normal cells and achieve a specific targeting property for cancer cells, HA is further conjugated on the surface of PGMA@Au (denoted as PGMA@Au–HA). The PGMA@Au–HA nanocomposites perform highly selective targeting toward cancer cells and have good photothermal properties, leading to threefold therapeutic efficacy against cancer cells in comparison with normal cells. These results indicate that the PGMA@Au–HA construct could be a promising platform for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  2. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  CAS  Google Scholar 

  3. Crane CH, Macdonald KO, Vauthey J, Yehuda P, Brown T, Curley S, Wong A, Delclos M, Charnsangavej C, Janjan NA (2002) Limitations of conventional doses of chemoradiation for unresectable biliary cancer. Int J Radiat Oncol 53:969–974

    Article  Google Scholar 

  4. Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox R, Tattersall M (1983) On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 19:203–208

    Article  CAS  Google Scholar 

  5. Reuther T, Schuster T, Mende U, Kübler A (2003) Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients—a report of a thirty year retrospective review. Int J Oral Max Surg 32:289–295

    Article  CAS  Google Scholar 

  6. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939

    Article  CAS  Google Scholar 

  7. Habash RW, Bansal R, Krewski D, Alhafid HT (2006) Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng 34:459–489

    Article  Google Scholar 

  8. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527

    Article  CAS  Google Scholar 

  9. Jori G, Spikes JD (1990) Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B 6:93–101

    Article  CAS  Google Scholar 

  10. Faris F, Thorniley M, Wickramasinghe Y, Houston R, Rolfe P, Livera N, Spencer A (1991) Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head. Clin Phys Physiol Meas 12:353–358

    Article  CAS  Google Scholar 

  11. Abdo A, Sahin M (2007) NIR light penetration depth in the rat peripheral nerve and brain cortex. Presented at 29th annual international conference of the IEEE, Lyon

  12. Shanmugam V, Selvakumar S, Yeh C-S (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287

    Article  CAS  Google Scholar 

  13. Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24:755–761

    Article  CAS  Google Scholar 

  14. Feng B, Zhou F, Wang D, Xu Z, Yu H, Li Y (2016) Gold nanomaterials for treatment of metastatic cancer. Sci China Chem 59:984–990

    Article  CAS  Google Scholar 

  15. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  16. Ke H, Wang J, Dai Z, Jin Y, Qu E, Xing Z, Guo C, Yue X, Liu J (2011) Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed Engl 50:3017–3021

    Article  CAS  Google Scholar 

  17. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R Jr, Olson J, Guthold M, Gmeiner WH (2009) Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 3:2667–2673

    Article  CAS  Google Scholar 

  18. Ji M, Jiang N, Chang J, Sun J (2014) Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv Funct Mater 24:5412–5419

    Article  CAS  Google Scholar 

  19. Zhou M, Li J, Liang S, Sood AK, Liang D, Li C (2015) CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 9:7085–7096

    Article  CAS  Google Scholar 

  20. Tang S, Chen M, Zheng N (2014) Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10:3139–3144

    Article  CAS  Google Scholar 

  21. Zhang Z, Shi J, Song Z, Zhu X, Zhu Y, Cao S (2018) A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J Mater Sci 53:1810–1823. https://doi.org/10.1007/s10853-017-1628-y

    Article  CAS  Google Scholar 

  22. Chen X, Liu Z, Parker SG, Zhang X, Gooding JJ, Ru Y, Liu Y, Zhou Y (2016) Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl Mater Interfaces 8:15857–15863

    Article  CAS  Google Scholar 

  23. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  Google Scholar 

  24. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  Google Scholar 

  25. Zhang H, Zhang Y, Wu C, Tan H, Wang S, Zhang B, Zhang Q (2017) Preparation and photothermal study of polystyrene coated with gold nanoshell composite particles. J Mater Sci 52:6581–6590. https://doi.org/10.1007/s10853-017-0893-0

    Article  CAS  Google Scholar 

  26. Fan X, Jia X, Zhang H, Zhang B, Li C, Zhang Q (2013) Synthesis of raspberry-like poly (styrene–glycidyl methacrylate) particles via a one-step soap-free emulsion polymerization process accompanied by phase separation. Langmuir 29:11730–11741

    Article  CAS  Google Scholar 

  27. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  CAS  Google Scholar 

  28. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  CAS  Google Scholar 

  29. Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, Messersmith PB, Park TG (2008) Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 20:4154–4157

    CAS  Google Scholar 

  30. Fan X, Jia X, Liu J, Liu Y, Zhang H, Zhang B, Zhang H, Zhang Q (2017) Morphology evolution of poly (glycidyl methacrylate) colloids in the 1,1-diphenylethene controlled soap-free emulsion polymerization. Eur Polym J 92:220–232

    Article  CAS  Google Scholar 

  31. Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG, Fox AP, Keating CD, Musick MD, Natan MJ (1996) Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12:2353–2361

    Article  CAS  Google Scholar 

  32. Culty M, Nguyen HA, Underhill CB (1992) The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 116:1055–1062

    Article  CAS  Google Scholar 

  33. Eliaz RE, Szoka FC (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 61:2592–2601

    CAS  Google Scholar 

  34. Underhill C, Thurn AL, Lacy BE (1985) Characterization and identification of the hyaluronate binding site from membranes of SV-3T3 cells. J Biol Chem 260:8128–8133

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support sponsored by the Science and Technology Project of Shenzhen (No. JCYJ20170306154725569), the National Natural Science Foundation of China (No. 81601606), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. ZZ2018183) and the National Undergraduate Innovation and Entrepreneurship Training Program (No. 201710699252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hepeng Zhang or Xin Chen.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Jin, R. et al. Preparation and photothermal therapy of hyaluronic acid–conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. J Mater Sci 53, 16252–16262 (2018). https://doi.org/10.1007/s10853-018-2773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2773-7

Keywords

Navigation