Skip to main content
Log in

One-step synthesis of Au–Ag alloy nanoparticles using soluble starch and their photocatalytic performance for 4-nitrophenol degradation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The green and controllable synthesis of Au–Ag alloy nanoparticles (NPs) in one-pot has been a challenge in nanotechnology. Here, the soluble starch was employed as a reducing and capping agent to synthesize stable Au–Ag alloy NPs without using any toxic agent. The surface plasmon resonance wavelength and the composition of Au–Ag alloy NPs could be continuously adjusted only by the synthesis time in one-pot. Au–Ag alloy NPs were characterized by means of various techniques. It could be found as-prepared NPs were quasi-spherical with a small average size and a face-centered cubic polycrystalline structure. The above green synthesis method, facile, efficient and eco-friendly, can be extended to the controllable synthesis of other bimetallic NPs. Obtained Au–Ag alloy NPs exhibited a superior photocatalytic activity and stability for the 4-nitrophenol (4-NP) degradation due to abundance hydroxyl groups of the soluble starch and the synergistic effect between Au and Ag elements. The rate constant of 4-NP degradation could be linearly tuned by the composition of Au–Ag alloy NPs and their synthesis time besides their addition amount. The above methods to control the rate constant provide promising routes for other photocatalytic reactions using bimetallic NPs as photocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kong XK, Zhu HY, Chen CL, Huang GM, Chen QW (2017) Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem Phys Lett 684:148–152

    Article  CAS  Google Scholar 

  2. Roy A, Debnath B, Sahoo R, Aditya T, Pal T (2017) Micelle confined mechanistic pathway for 4-nitrophenol reduction. J Colloid Interface Sci 493:288–294

    Article  CAS  Google Scholar 

  3. Wang SP, Zhang JN, Yuan PF, Sun Q, Jia Y, Yan WF, Chen ZM, Xu Q (2015) Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. J Mater Sci 50:1323–1332. https://doi.org/10.1007/s10853-014-8692-3

    Article  CAS  Google Scholar 

  4. Jin L, Zhao XS, Ye J, Qian XY, Dong MD (2018) MOF-derived magnetic Ni-carbon submicrorods for the catalytic reduction of 4-nitrophenol. Catal Commun 107:43–47

    Article  CAS  Google Scholar 

  5. Cao MW, Feng L, Yang PP, Wang HX, Liang X, Chen XW (2018) Fabrication of reduced graphene oxide decorated with gold and nickel for the catalytic reduction of 4-nitrophenol. J Mater Sci 53:4874–4883. https://doi.org/10.1007/s10853-017-1913-9

    Article  CAS  Google Scholar 

  6. Liang M, Zhang G, Feng YJ, Li RL, Hou P, Zhang JS, Wang JM (2018) Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. J Mater Sci 53:1568–1579. https://doi.org/10.1007/s10853-017-1610-8

    Article  CAS  Google Scholar 

  7. Guo MZ, He J, Li Y, Ma S, Sun XH (2016) One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater 310:89–97

    Article  CAS  Google Scholar 

  8. Lu SX, Yu JY, Cheng YY, Wang Q, Barras A, Xu WG, Szunerits S, Cornuc D, Boukherroub R (2017) Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol. Appl Surf Sci 411:163–169

    Article  CAS  Google Scholar 

  9. Chairam S, Konkamdee W, Parakhun R (2017) Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J Saudi Chem Soc 21:656–663

    Article  CAS  Google Scholar 

  10. Zhu WY, Liu JC, Yu SY, Zhou Y, Yan XL (2016) Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater 318:407–416

    Article  CAS  Google Scholar 

  11. Viet PV, Huy TH, Sang NX, Thi CM, Hieu LV (2018) One-step hydrothermal synthesis and characterization of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight. J Mater Sci 53:3364–3374. https://doi.org/10.1007/s10853-017-1762-6

    Article  CAS  Google Scholar 

  12. Zhang Y, Zhou JB, Li Z, Feng QQ (2018) Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation. J Mater Sci 53:3149–3162. https://doi.org/10.1007/s10853-017-1779-x

    Article  CAS  Google Scholar 

  13. Karthika V, Arumugam A, Gopinath K, Kaleeswarran P, Govindarajan M, Alharbi NS, Kadaikunnan S, Khalede JM, Benelli G (2017) Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J Photochem Photobiol B 167:189–199

    Article  CAS  Google Scholar 

  14. Wu T, Ma JK, Wang XR, Liu Y, Xu H, Gao JP, Wang W, Liu Y, Yan J (2013) Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotechnology 24:125301. https://doi.org/10.1088/0957-4484/24/12/125301

    Article  CAS  Google Scholar 

  15. Britto Hurtado R, Cortez-Valadez M, Arizpe-Chávez H, Flores-Lopez NS, Calderón-Ayala G, Flores-Acosta M (2017) Random alloy of Au–Ag bimetallic nanoparticles at room temperature—facile synthesis and vibrational properties. Gold Bull 50:85–92

    Article  CAS  Google Scholar 

  16. Zhu Z, Chen F, Xu CX, Yang GC, Zhu Y, Luo ZX (2017) Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure. J Cryst Growth 479:9–15

    Article  CAS  Google Scholar 

  17. Nguyen TB, Nguyen TD, Tran TD, Thi THN (2015) Laser-induced synthesis of Au–Ag alloy nanoparticles in polyvinylpyrrolidone (C6H9NO)n solution. J Clust Sci 26:1787–1799

    Article  CAS  Google Scholar 

  18. Sareen S, Mutreja V, Pal B, Singh S (2018) Synthesis of bimetallic Au–Ag alloyed mesocomposites and their catalytic activity for the reduction of nitroaromatics. Appl Surf Sci 435:552–562

    Article  CAS  Google Scholar 

  19. Chen MJ, He YR, Zhu JQ (2017) Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int J Heat Mass Transf 114:1098–1104

    Article  CAS  Google Scholar 

  20. Qin YC, Dai XP, Zhang X, Huang XL, Sun H, Gao DW, Yu YB, Zhang PF, Jiang Y, Zhuo HY, Jin AX, Wang H (2016) Microwave-assisted synthesis of multiply-twinned Au–Ag nanocrystals on reduced graphene oxide for high catalytic performance towards hydrogen evolution reaction. J Mater Chem A 4:3865–3871

    Article  CAS  Google Scholar 

  21. Wang C, Yin HF, Chan R, Peng S, Dai S, Sun SH (2009) One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for co oxidation. Chem Mater 21:433–435

    Article  CAS  Google Scholar 

  22. Zamora-Mendoza MT, López-Miranda JL, Rosas G (2017) A green approach for self-assembly of Ag–Au nanoparticles into 3-D arrays. Mater Lett 186:311–313

    Article  CAS  Google Scholar 

  23. Sun L, Yin YC, Lv PC, Su WX, Zhang LX (2018) Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Adv 8:3964–3973

    Article  CAS  Google Scholar 

  24. Ganaie SU, Abbasi T, Abbasi SA (2016) Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed antigonon leptopus. J Exp Nanosci 11:395–417

    Article  CAS  Google Scholar 

  25. Filippo E, Serra A, Buccolieri A, Manno D (2010) Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J Non-cryst Solids 356:344–350

    Article  CAS  Google Scholar 

  26. Yakout SM, Mostafa AA (2015) A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int J Clin Exp Med 8:3538–3544

    CAS  Google Scholar 

  27. Valodkar M, Bhadoria A, Pohnerkar J, Mohan M, Thakore S (2010) Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles. Carbohydr Res 345:1767–1773

    Article  CAS  Google Scholar 

  28. Pienpinijtham P, Thammacharoen C, Ekgasit S (2012) Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer. Macromol Res 20:1281–1288

    Article  CAS  Google Scholar 

  29. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2005) Sugar assisted evolution of mono- and bimetallic nanoparticles. Colloids Surf A 264:133–138

    Article  CAS  Google Scholar 

  30. Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf A 382:203–210

    Article  CAS  Google Scholar 

  31. Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8:34–38

    Article  CAS  Google Scholar 

  32. Malathi S, Ezhilarasu T, Abiraman T, Balasubramanian S (2014) One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carbohydr Polym 111:734–743

    Article  CAS  Google Scholar 

  33. Sun L, Yin YC, Zhang LX, Su WX, Wei Z (2017) Green controlled synthesis of gold nanoparticles and its reaction mechanism. J Funct Mater 5:199–204

    Google Scholar 

  34. Kumar N, Alam F, Dutta V (2014) Deposition of Ag and Au–Ag alloy nanoparticle films by spray pyrolysis technique with tuned plasmonic properties. J Alloy Compd 585:312–317

    Article  CAS  Google Scholar 

  35. Monga A, Pal B (2015) Preparation and characterization of different shapes of Au–Ag bimetallic nanocomposites for enhanced physicochemical properties. Colloids Surf A 481:158–166

    Article  CAS  Google Scholar 

  36. Sun L, Luan WL, Shan YJ (2012) A composition and size controllable approach for Au–Ag alloy nanoparticles. Nanoscale Res Lett 7:225. https://doi.org/10.1186/1556-276X-7-225

    Article  CAS  Google Scholar 

  37. Zhang GL, Du MM, Li QB, Li XL, Huang JL, Jiang XD, Sun DH (2013) Green synthesis of Au–Ag alloy nanoparticles using cacumen platycladi extract. RSC Adv 3:1878–1884

    Article  CAS  Google Scholar 

  38. Wang C, Peng S, Chan R, Sun SH (2009) Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au. Small 5:567–570

    Article  CAS  Google Scholar 

  39. Kariuki NN, Luo J, Maye MM, Hassan SA, Menard T, Naslund HR, Lin YH, Wang CM, Engelhard MH, Zhong CJ (2004) Composition-controlled synthesis of bimetallic gold–silver nanoparticles. Langmuir 20:11240–11246

    Article  CAS  Google Scholar 

  40. Xiong YJ, McLellan JM, Yin YD, Xia YN (2007) Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew Chem Int Ed 46:790–794

    Article  CAS  Google Scholar 

  41. Bhui DK, Misra A (2012) Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity. Carbohydr Polym 89:830–835

    Article  CAS  Google Scholar 

  42. Nie RF, Wang JH, Wang LN, Qin Y, Chen P, Hou ZY (2012) Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 50:586–596

    Article  CAS  Google Scholar 

  43. Shen WL, Qu YY, Pei XF, Li SZ, You SN, Wang JW, Zhang ZJ, Zhou JT (2017) Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J Hazard Mater 321:299–306

    Article  CAS  Google Scholar 

  44. Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A 137:185–192

    Article  Google Scholar 

  45. Holden MS, Nick KE, Hall M, Milligan JR, Chen Q, Perry CC (2014) Synthesis and catalytic activity of pluronic stabilized silver–gold bimetallic nanoparticles. RSC Adv 4:52279–52288

    Article  CAS  Google Scholar 

  46. Lim SH, Ahn EY, Park Y (2016) Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Res Lett 11:474. https://doi.org/10.1186/s11671-016-1694-0

    Article  Google Scholar 

  47. Li P, Li S, Wang Y, Zhang Y, Han GZ (2017) Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with enhanced catalytic activity. Colloids Surf A 520:26–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the National Natural Science Foundation of China (No. 11404210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Lv, P., Li, H. et al. One-step synthesis of Au–Ag alloy nanoparticles using soluble starch and their photocatalytic performance for 4-nitrophenol degradation. J Mater Sci 53, 15895–15906 (2018). https://doi.org/10.1007/s10853-018-2763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2763-9

Keywords

Navigation