Skip to main content
Log in

PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PdCu nanoparticles supported on reduced graphene oxide nanosheets (PdCu/rGO) with uniform size distribution and dispersion are fabricated by a facile two-step reduction method. During the whole synthesis procedure, no capping agent or surfactant has been used. By varying the Pd/Cu molar ratio, electrocatalysts with different size distribution and dispersion of nanoparticles on graphene are prepared, and their electrocatalytic performance toward methanol oxidation reaction has been studied. It is concluded that the as-prepared electrocatalyst of Pd2Cu2/rGO, of which the Pd/Cu molar ratio is 1:1, exhibits the highest mass activity and most stable electroactivity. Compared to commercial Pd/C, the as-prepared Pd2Cu2/rGO also demonstrates 2.49 times higher mass activity and much more stable electroactivity. The excellent performance of the Pd2Cu2/rGO electrocatalyts is mainly due to the advantages of bimetallic synergistic effects and the supporting material of graphene. Owing to the advantages of high electroactivity, long stability, and cost-effectiveness, the as-prepared Pd2Cu2/rGO nanocomposites are promising anode electrocatalysts for direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu C, Cheng H, Zhao Y, Hu Y, Liu Y, Dai L, Qu L (2012) Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation. Adv Mater 24(40):5493–5498

    Article  CAS  Google Scholar 

  2. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4(8):2736–2753

    Article  CAS  Google Scholar 

  3. Li H-H, Fu Q-Q, Xu L, Ma S-Y, Zheng Y-R, Liu X-J, Yu S-H (2017) Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ Sci 10:1751–1756

    Article  CAS  Google Scholar 

  4. Pedireddy S, Lee HK, Tjiu WW, Phang IY, Tan HR, Chua SQ, Troadec C, Ling XY (2014) One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat Commun 5:4947

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    Article  CAS  Google Scholar 

  6. Stephens IEL, Rossmeisl J, Chorkendorff I (2016) Toward sustainable fuel cells. Science 354(6318):1378–1379

    Article  CAS  Google Scholar 

  7. Huang H, Yang S, Vajtai R, Wang X, Ajayan PM (2014) Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv Mater 26(30):5160–5165

    Article  CAS  Google Scholar 

  8. Zhang Z, Ge J, Ma L, Liao J, Lu T, Xing W (2009) Highly active carbon-supported PdSn catalysts for formic acid electrooxidation. Fuel Cells 9(2):114–120

    Article  CAS  Google Scholar 

  9. Chen M, Wang ZB, Zhou K, Chu YY (2010) Synthesis of Pd/C catalyst by modified polyol process for formic acid electrooxidation. Fuel Cells 10(6):1171–1175

    Article  CAS  Google Scholar 

  10. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109(9):4183–4206

    Article  CAS  Google Scholar 

  11. Xi Z, Erdosy DP, Mendoza-Garcia A, Duchesne PN, Li J, Muzzio M, Li Q, Zhang P, Sun S (2017) Pd nanoparticles coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett 17(4):2727–2731

    Article  CAS  Google Scholar 

  12. Liu J, Ye J, Xu C, Jiang SP, Tong Y (2007) Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochem Commun 9(9):2334–2339

    Article  CAS  Google Scholar 

  13. Xu C, Wang H, Shen PK, Jiang SP (2007) Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater 19(23):4256–4259

    Article  CAS  Google Scholar 

  14. Awasthi R, Singh R (2013) Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51:282–289

    Article  CAS  Google Scholar 

  15. Wen W, Li C, Li W, Tian Y (2013) Carbon-supported Pd–Cr electrocatalysts for the electrooxidation of formic acid that demonstrate high activity and stability. Electrochim Acta 109:201–206

    Article  CAS  Google Scholar 

  16. Yang ZS, Wu JJ (2012) Pd/Co bimetallic nanoparticles: coelectrodeposition under protection of PVP and enhanced electrocatalytic activity for ethanol electrooxidation. Fuel Cells 12(3):420–425

    Article  CAS  Google Scholar 

  17. Qi Z, Geng H, Wang X, Zhao C, Ji H, Zhang C, Xu J, Zhang Z (2011) Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J Power Sources 196(14):5823–5828

    Article  CAS  Google Scholar 

  18. Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti ML, Innocenti M (2009) Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel–zinc materials. Chemsuschem 2(1):99–112

    Article  CAS  Google Scholar 

  19. Liu Z, Zhang X, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11(4):925–928

    Article  CAS  Google Scholar 

  20. Liu J, Zhou H, Wang Q, Zeng F, Kuang Y (2012) Reduced graphene oxide supported palladium–silver bimetallic nanoparticles for ethanol electro-oxidation in alkaline media. J Mater Sci 47(5):2188–2194

    Article  CAS  Google Scholar 

  21. Dong Q, Zhao Y, Han X, Wang Y, Liu M, Li Y (2014) Pd/Cu bimetallic nanoparticles supported on graphene nanosheets: facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media. Int J Hydrogen Energy 39(27):14669–14679

    Article  CAS  Google Scholar 

  22. Na H, Zhang L, Qiu H, Wu T, Chen M, Yang N, Li L, Xing F, Gao J (2015) A two step method to synthesize palladium–copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Power Sources 288:160–167

    Article  CAS  Google Scholar 

  23. Castegnaro MV, Gorgeski A, Balke B, Alves MdCM, Morais J (2016) Charge transfer effects on the chemical reactivity of PdxCu1–x nanoalloys. Nanoscale 8(1):641–647

    Article  CAS  Google Scholar 

  24. Choi R, Jung J, Kim G, Song K, Kim Y-I, Jung SC, Han Y-K, Song H, Kang Y-M (2014) Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy Environ Sci 7(4):1362–1368

    Article  CAS  Google Scholar 

  25. Zhao X, Dai L, Qin Q, Pei F, Hu C, Zheng N (2017) Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 13(12):1602970

    Article  Google Scholar 

  26. Liang H-P, Guo Y-G, Zhang H-M, Hu J-S, Wan L-J, Bai C-L (2004) Controllable AuPt bimetallic hollow nanostructures. Chem Commun 13:1496–1497

    Article  Google Scholar 

  27. Liu Z, Zhao B, Guo C, Sun Y, Xu F, Yang H, Li Z (2009) Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surface. J Phys Chem C 113(38):16766–16771

    Article  CAS  Google Scholar 

  28. Labulo AH, Martincigh BS, Omondi B, Nyamori VO (2017) Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. J Mater Sci 52(16):9225–9248

    Article  CAS  Google Scholar 

  29. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  30. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  31. Dai S, Zhang J, Fu Y, Li W (2018) Biothiol-mediated synthesis of Pt nanoparticles on graphene nanoplates and their application in methanol electrooxidation. J Mater Sci 53(1):423–434

    Article  CAS  Google Scholar 

  32. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  33. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131(31):11027–11032

    Article  CAS  Google Scholar 

  34. Xu C, Liu A, Qiu H, Liu Y (2011) Nanoporous PdCu alloy with enhanced electrocatalytic performance. Electrochem Commun 13(8):766–769

    Article  CAS  Google Scholar 

  35. Xu C, Liu Y, Wang J, Geng H, Qiu H (2012) Nanoporous PdCu alloy for formic acid electro-oxidation. J Power Sources 199:124–131

    Article  CAS  Google Scholar 

  36. Hsieh M-W, Whang T-J (2013) Electrodeposition of PdCu alloy and its application in methanol electro-oxidation. Appl Surf Sci 270:252–259

    Article  CAS  Google Scholar 

  37. Xu C, Pk Shen, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164(2):527–531

    Article  CAS  Google Scholar 

  38. Zhao J, Shao M, Yan D, Zhang S, Lu Z, Li Z, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J Mater Chem A 1(19):5840–5846

    Article  CAS  Google Scholar 

  39. Sheng J, Kang J, Ye H, Xie J, Zhao B, Fu X, Yu Y, Sun R, Wong CP (2017) Porous octahedral PdCu nanocages as high efficient electrocatalysts for methanol oxidation reaction. J Mater Chem A 6(9):3906–3912

    Article  Google Scholar 

  40. Liu M, Lu Y, Chen W (2013) PdAg nanorings supported on graphene nanosheets: highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv Funct Mater 23(10):1289–1296

    Article  CAS  Google Scholar 

  41. Li F, Guo Y, Li R, Wu F, Liu Y, Sun X, Li C, Wang W, Gao J (2013) A facile method to synthesize supported Pd–Au nanoparticles using graphene oxide as the reductant and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Mater Chem A 1(22):6579–6587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.21203236), Guangdong Department of Science and Technology (2017A050501052), and Shenzhen research plan (JCYJ20160229195455154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Zhu Fu or Rong Sun.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Li, Y., Chen, J. et al. PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol. J Mater Sci 53, 15871–15881 (2018). https://doi.org/10.1007/s10853-018-2759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2759-5

Keywords

Navigation