Skip to main content
Log in

Highly efficient and reproducible planar perovskite solar cells with mitigated hysteresis enabled by sequential surface modification of electrodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fullerene-based derivatives passivation and TiCl4 treatment are widely used as interfacial modification methods in planar perovskite solar cells for enhancing efficiency, stability and reducing hysteresis. Although the two kinds of surface modifications have been separately reported to modify the metal oxide or even directly modify the electrodes, the resulting device performance is still moderate. Herein, we report a sequential surface modification of FTO by combining a low-temperature processed ultrathin TiOx layer with a PCBM passivation layer, synergistically affording high efficiency and mitigated hysteresis and exhibiting good reproducibility for nip planar perovskite solar cells. Based on this sequential modification strategy, the modified FTO substrates can effectively facilitate electron transfer and suppress interfacial recombination. As a result, we obtain efficient perovskite solar cells with the best power conversion efficiency (PCE) of 18.26% and the stabilized PCE of 17.22%. Additionally, we demonstrate that this facile sequential surface modification method gives rise to highly reproducible device performance with the average PCE of 17.16%. Beyond that, the photocurrent hysteresis is effectively suppressed for the obtained solar cells compared with the single modified analogues owing to facilitated electron transfer at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  2. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells Nat. Photonics. 8:506–514

    Article  CAS  Google Scholar 

  3. Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  CAS  Google Scholar 

  4. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Article  CAS  Google Scholar 

  5. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591–597

    Article  Google Scholar 

  6. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  CAS  Google Scholar 

  7. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  CAS  Google Scholar 

  8. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  CAS  Google Scholar 

  9. Zhou H, Chen Q, Li G et al (2014) Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  CAS  Google Scholar 

  10. Jeon NJ, Noh JH, Yang WS et al (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480

    Article  CAS  Google Scholar 

  11. Yang WS, Park B-W, Jung EH et al (2017) Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356:1376–1379

    Article  CAS  Google Scholar 

  12. NREL, https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 25 Dec 2017

  13. Anaraki EH, Kermanpur A, Steier L et al (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 9:3128–3134

    Article  CAS  Google Scholar 

  14. Jiang Q, Zhang L, Wang H et al (2016) Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells Nature. Energy 2:16177–16184

    Google Scholar 

  15. Liu DY, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138

    Article  CAS  Google Scholar 

  16. Chen P, Yin XT, Que MD, Yang YW, Que WX (2016) TiO2 passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. Rsc Adv 6:57996–58002

    Article  CAS  Google Scholar 

  17. Wu F, Gao W, Yu H, Zhu L, Li L, Yang C (2018) Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. J Mater Chem A 6:4443–4448

    Article  CAS  Google Scholar 

  18. Peng J, Wu Y, Ye W et al (2017) Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci 10:1792–1800

    Article  CAS  Google Scholar 

  19. Li WZ, Zhang W, Van Reenen S et al (2016) Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci 9:490–498

    Article  CAS  Google Scholar 

  20. Lee SW, Kim S, Bae S et al (2016) UV degradation and recovery of perovskite solar cells. Sci Rep 6:38150–38159

    Article  CAS  Google Scholar 

  21. Murakami TN, Miyadera T, Funaki T et al (2017) Adjustment of conduction band edge of compact TiO2 layer in perovskite solar cells through TiCl4 treatment. ACS Appl Mater Interfaces 9:36708–36714

    Article  CAS  Google Scholar 

  22. Liu Z, Chen Q, Hong Z et al (2016) Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces 8:11076–11083

    Article  CAS  Google Scholar 

  23. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Gratzel M (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett 14:2591–2596

    Article  CAS  Google Scholar 

  24. Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H (2015) Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem Lett 44:674–676

    Article  CAS  Google Scholar 

  25. Fang YJ, Bi C, Wang D, Huang JS (2017) The functions of fullerenes in hybrid perovskite solar cells. Acs Energy Lett 2:782–794

    Article  CAS  Google Scholar 

  26. Zhou WR, Zhen JM, Liu Q et al (2017) Successive surface engineering of TiO2 compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. J Mater Chem A 5:1724–1733

    Article  CAS  Google Scholar 

  27. Liu C, Wang K, Du P et al (2015) High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. ACS Appl Mater Interfaces 7:1153–1159

    Article  CAS  Google Scholar 

  28. Kim JH, Chueh CC, Williams ST, Jen AK (2015) Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale 7:17343–17349

    Article  CAS  Google Scholar 

  29. Ryu S, Seo J, Shin SS et al (2015) Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J Mater Chem A 3:3271–3275

    Article  CAS  Google Scholar 

  30. Xie J, Yu X, Huang J et al (2017) Self-Organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability. Adv Sci (Weinh) 4:1700018–1700024

    Article  Google Scholar 

  31. Chen P, Yin X, Que M, Yang Y, Liu X, Que W (2018) Bilayer photoanode approach for efficient In 2 O 3 based planar heterojunction perovskite solar cells. J Alloys Compd 735:938–944

    Article  CAS  Google Scholar 

  32. Liu D, Yang J, Kelly TL (2014) Compact layer free perovskite solar cells with 13.5% efficiency. J Am Chem Soc 136:17116–17122

    Article  CAS  Google Scholar 

  33. Huang LK, Hu ZY, Xu J et al (2016) Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices Sol. Energy Mater Sol Cells 152:118–124

    Article  CAS  Google Scholar 

  34. Huang LK, Hu ZY, Xu J et al (2016) Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer Sol. Energy Mater Sol Cells 149:1–8

    Article  CAS  Google Scholar 

  35. Lin Z, Chang J, Xiao J et al (2016) Interface studies of the planar heterojunction perovskite solar cells Sol. Energy Mater Sol Cells 157:783–790

    Article  CAS  Google Scholar 

  36. Chen Q, Zhou H, Hong Z et al (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136:622–625

    Article  CAS  Google Scholar 

  37. Wojciechowski K, Stranks SD, Abate A et al (2014) Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. ACS Nano 8:12701–12709

    Article  CAS  Google Scholar 

  38. Chen P, Yin XT, Que MD, Liu XB, Que WX (2017) Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. J Mater Chem A 5:9641–9648

    Article  CAS  Google Scholar 

  39. Yang D, Zhou X, Yang RX et al (2016) Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci 9:3071–3078

    Article  CAS  Google Scholar 

  40. Li Y, Zhao Y, Chen Q et al (2015) Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J Am Chem Soc 137:15540–15547

    Article  CAS  Google Scholar 

  41. Wu F, Chen T, Yue X, Zhu L (2018) Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells Org. Electron. 58:6–11

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant No. 51502239 and 61774122, China Postdoctoral Science Foundation under grant 2017T100751, Natural Science Basic Research Plan in Shaanxi Province under Grant No. 2016JQ6058, and the 111 Project of China (B14040). The SEM work was done at International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingtian Yin or Wenxiu Que.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wang, E., Yin, X. et al. Highly efficient and reproducible planar perovskite solar cells with mitigated hysteresis enabled by sequential surface modification of electrodes. J Mater Sci 53, 16062–16073 (2018). https://doi.org/10.1007/s10853-018-2752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2752-z

Keywords

Navigation