Skip to main content
Log in

Synthesis and evolution of α-Fe2O3 nanorods for enhanced visible-light-driven photocatalysis

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-crystalline α-Fe2O3 nanorods were prepared by a simple and direct hydrothermal method in large quantities. The 1, 2-propanediamine played the role of shape-control agent for the formation of α-Fe2O3 nanorods. The characteristics and the evolution mechanism of α-Fe2O3 nanorods were investigated in detail. As reaction time prolonged, the hydrogen ions generated by the hydrolysis of Fe3+ could etch the surface of α-Fe2O3 nanorods and resulted in the eroded α-Fe2O3 nanorods formation. HRTEM results demonstrated that the eroded α-Fe2O3 nanorods have rough edges and corners which leading to higher photodegradation ability. Absorption spectra and photocurrent responses indicated that the eroded α-Fe2O3 nanorods have a narrow bandgap and higher photocurrent response, which were benefit for absorbing photons and inhibiting the recombination of photogenerated charges. It is expected that the etching of semiconductor materials is an effective way to design the photocatalysts with a high performance, and the α-Fe2O3 nanorods with high visible-light photocatalytic activity could find potential applications in the field of environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bagchi D, Maji TK, Sardar S, Lemmens P, Bhattacharya C, Karmakar D, Pal SK (2017) Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies. Phys Chem Chem Phys 19(3):2503–2513

    Article  CAS  Google Scholar 

  2. Sciacca B, van de Groep J, Polman A, Garnett EC (2016) Solution-grown silver nanowire ordered arrays as transparent electrodes. Adv Mater 28(5):905–909

    Article  CAS  Google Scholar 

  3. Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736

    Article  CAS  Google Scholar 

  4. Liu Z, Lv BL, Xu Y, Wu D (2013) Hexagonal alpha-Fe2O3 nanorods bound by high-index facets as high-performance electrochemical sensor. J Mater Chem A 1(9):3040–3046

    Article  CAS  Google Scholar 

  5. Hadia NMA, Garcia-Granda S, Garcia JR, Martinez-Blanco D, Mohamed SH (2014) Morphological and magnetic properties of the hydrothermally prepared alpha-Fe2O3 nanorods. Mater Chem Phys 147(3):1037–1041

    Article  CAS  Google Scholar 

  6. Zerjav G, Arshad MS, Djinovic P, Junkar I, Kovac J, Zavasnik J, Pintar A (2017) Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale 9(13):4578–4592

    Article  CAS  Google Scholar 

  7. Sun JQ, Chen YL, Chen JG (2016) Morphology effect of one-dimensional iron oxide nanocatalysts on Fischer–Tropsch synthesis. Catal Sci Technol 6(20):7505–7511

    Article  CAS  Google Scholar 

  8. Park TJ, Pawar RC, Kang S, Lee CS (2016) Ultra-thin coating of g-C3N4 on an aligned ZnO nanorod film for rapid charge separation and improved photodegradation performance. Rsc Adv 6(92):89944–89952

    Article  CAS  Google Scholar 

  9. Ikizler B, Peker SM (2016) Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors. Thin Solid Films 605:232–242

    Article  CAS  Google Scholar 

  10. Zhang RF, Tian XK, Ma LL, Yang C, Zhou ZX, Wang YX, Wang SH (2015) Visible-light-responsive t-Se nanorod photocatalysts: synthesis, properties, and mechanism. RSC Adv 5(56):45165–45171

    Article  CAS  Google Scholar 

  11. Zhang XY, Qin JQ, Xue YN, Yu PF, Zhang B, Wang LM, Liu RP (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596

    Article  Google Scholar 

  12. Gu XD, Yu N, Zhang LS, Yang JM, Hu JQ, Chen ZG (2015) Growth of TiO2 nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode. Rsc Adv 5(124):102868–102876

    Article  CAS  Google Scholar 

  13. Liu XQ, Li Z, Zhao W, Zhao CX, Yang JB, Wang Y (2014) Zinc Oxide nanorod/Au composite arrays and their enhanced photocatalytic properties. J Colloid Interface Sci 432:170–175

    Article  CAS  Google Scholar 

  14. Luo JS, Ma L, He TC, Ng CF, Wang SJ, Sun HD, Fan HJ (2012) TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116(22):11956–11963

    Article  CAS  Google Scholar 

  15. Mu QH, Li YG, Wang HZ, Zhang QH (2012) Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. J Colloid Interface Sci 365(1):308–313

    Article  CAS  Google Scholar 

  16. Wang XH, Gao J, Xu BG, Hua T, Xia HY (2015) ZnO nanorod/nickel phthalocyanine hierarchical hetero-nanostructures with superior visible light photocatalytic properties assisted by H2O2. RSC Adv 5(106):87233–87240

    Article  CAS  Google Scholar 

  17. Wang C, Huang ZX (2016) Controlled synthesis alpha-Fe2O3 nanostructures for efficient photocatalysis. Mater Lett 164:194–197

    Article  CAS  Google Scholar 

  18. Yin QQ, Qiao R, Zhu LL, Li ZQ, Li MM, Wu WJ (2014) alpha-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: synthesis and enhanced visible-light photocatalysis. Mater Lett 135:135–138

    Article  CAS  Google Scholar 

  19. Pradhan GK, Padhi DK, Parida KM (2013) Fabrication of alpha-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Interfaces 5(18):9101–9110

    Article  CAS  Google Scholar 

  20. Zhang GY, Feng Y, Xu YY, Gao DZ, Sun YQ (2012) Controlled synthesis of mesoporous alpha-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47(3):625–630

    Article  CAS  Google Scholar 

  21. Cai JG, Chen SY, Hu J, Wang Z, Ma YR, Qi LM (2013) Top-down fabrication of hematite mesocrystals with tunable morphologies. CrystEngComm 15(32):6284–6288

    Article  CAS  Google Scholar 

  22. Li P, Ji J, Deng X, Li A, Hu J, Li G, Zhang W (2015) Fe2O3 icositetrahedra: evolution and their comparative photocatalytic activities. CrystEngComm 17(38):7283–7289

    Article  CAS  Google Scholar 

  23. Shang Y, Sun D, Shao Y, Zhang D, Guo L, Yang S (2012) A facile top-down etching to create a Cu2O jagged polyhedron covered with numerous 110 edges and 111 corners with enhanced photocatalytic activity. Chem-A Eur J 18(45):14261–14266

    Article  CAS  Google Scholar 

  24. Hu ZW, Li W (2012) Preparation of superhydrophobic Fe2O3 nanorod films with the tunable water adhesion. J Colloid Interface Sci 376:245–249

    Article  CAS  Google Scholar 

  25. Li P, Yan X, He Z, Ji J, Hu J, Li G, Lian K, Zhang W (2016) alpha-Fe2O3 concave and hollow nanocrystals: top-down etching synthesis and their comparative photocatalytic activities. CrystEngComm 18(10):1752–1759

    Article  CAS  Google Scholar 

  26. Li H, Yu K, Li C, Guo B, Lei X, Fu H, Zhu Z (2015) Novel dual-petal nanostructured WS2@MoS2 with enhanced photocatalytic performance and a comprehensive first-principles investigation. J Mater Chem A 3(40):20225–20235

    Article  CAS  Google Scholar 

  27. Jiao Y, Liu Y, Qu FY, Umar A, Wu X (2015) Visible-light-driven photocatalytic properties of simply synthesized alpha-Iron(III)oxide nanourchins. J Colloid Interface Sci 451:93–100

    Article  CAS  Google Scholar 

  28. Tian J, Zhao ZH, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43(20):6920–6937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51205276 and 61474079), China Postdoctoral Science Foundation (Grant No. 2013T60268), the Special Talents in Shanxi Province (Grant No. 201605D211020), Science and Technology Innovation Project of Higher Education of Shanxi Province (Grant No. 2016136) and Graduate Student Education Innovation Project in Shanxi (Grant Nos. 2017SY021 and 2017BY049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wu, Y., Li, D. et al. Synthesis and evolution of α-Fe2O3 nanorods for enhanced visible-light-driven photocatalysis. J Mater Sci 53, 15850–15858 (2018). https://doi.org/10.1007/s10853-018-2751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2751-0

Keywords

Navigation