Skip to main content
Log in

Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fabrication of the polymer/graphene nanocomposites with high electro-mechanical properties is very challenging approach these days against the electromagnetic pollution. This paper mainly focused on the preparation of in situ reduced graphene oxide (IrGO) during melt blending of polycarbonate/ethylene-methyl acrylate [PC/EMA (95/5 wt/wt)] blend and graphene oxide to achieve enhanced electro-mechanical properties of the nanocomposites. It involves the reduction mechanism of graphene oxide with in the polymer matrix. The nanocomposites showed a significant improvement in mechanical stiffness owing to efficient stress transfer from matrix to filler. PC/EMA–IrGO nanocomposites with 15 phr loading of GO showed highest electromagnetic shielding effectiveness (− 30 dB) over the frequency range of X-band (8.2–12.4 GHz). This promising strategy of developing single-step PC/EMA–IrGO nanocomposites with enhanced electro-mechanical properties can also be used in large-scale technical and commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  2. Liu J, Xue Y, Zhang M, Dai L (2012) Graphene-based materials for energy applications. MRS Bull 37(12):1265–1272

    Article  CAS  Google Scholar 

  3. Ovid’Ko I (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34(1):1–11

    Google Scholar 

  4. Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810

    Article  CAS  Google Scholar 

  5. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  6. Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3:1–7

    CAS  Google Scholar 

  7. Yooness M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220

    Article  Google Scholar 

  8. Zhang X, Zhou Z, Lu C (2015) Reductant-and stabilizer-free synthesis of graphene–polyaniline aqueous colloids for potential waterborne conductive coating application. RSC Adv 5(26):20186–20192

    Article  CAS  Google Scholar 

  9. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z et al (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115(17):8753–8758

    Article  CAS  Google Scholar 

  10. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y et al (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927

    Article  CAS  Google Scholar 

  11. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  12. Cao J, Zhang X, Wu X, Wang S, Lu C (2016) Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr Polym 140:88–95

    Article  CAS  Google Scholar 

  13. Zhou Z, Zhang X, Wu X, Lu C (2016) Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Compos Sci Technol 125:1–8

    Article  Google Scholar 

  14. Colonna S, Bernal M, Gavoci G, Gomez J, Novara C, Saracco G et al (2017) Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization. Mater Des 119:124–132

    Article  CAS  Google Scholar 

  15. Lee B-I, Jeong H, Byeon S-H (2013) Tunable color generation of transparent composite films reinforced with luminescent nanofillers. Chem Commun 49(97):11397–11399

    Article  CAS  Google Scholar 

  16. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096

    Article  CAS  Google Scholar 

  17. Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249

    Article  CAS  Google Scholar 

  18. Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through ππ stacking. ACS Appl Mater Interfaces 3(8):3103–3109

    Article  CAS  Google Scholar 

  19. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646

    Article  CAS  Google Scholar 

  20. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  Google Scholar 

  21. Georgakilas V (2014) Functionalization of graphene. Wiley, New York

    Book  Google Scholar 

  22. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  23. Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C 6(8):2139–2147

    Article  CAS  Google Scholar 

  24. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669

    Article  Google Scholar 

  25. Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32(22):1771–1789

    Article  CAS  Google Scholar 

  26. Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H et al (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res 13(2):869–878

    Article  CAS  Google Scholar 

  27. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327

    Article  CAS  Google Scholar 

  28. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    Article  CAS  Google Scholar 

  29. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543

    Article  CAS  Google Scholar 

  30. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233

    Article  CAS  Google Scholar 

  31. Bielawski C, Dreyer D, Park S, Ruoff R (2010) The chemistry of grapheme oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  32. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  33. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122

    Article  CAS  Google Scholar 

  34. Joshi A, Bajaj A, Singh R, Anand A, Alegaonkar P, Datar S (2015) Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos B Eng 69:472–477

    Article  CAS  Google Scholar 

  35. Li M, Gao C, Hu H, Zhao Z (2013) Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65:371–373

    Article  CAS  Google Scholar 

  36. Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F et al (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21(24):8612–8617

    Article  CAS  Google Scholar 

  37. Zheng D, Tang G, Zhang H-B, Yu Z-Z, Yavari F, Koratkar N et al (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72(2):284–289

    Article  CAS  Google Scholar 

  38. Tang H, Ehlert GJ, Lin Y, Sodano HA (2011) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12(1):84–90

    Article  Google Scholar 

  39. Shen Y, Jing T, Ren W, Zhang J, Jiang Z-G, Yu Z-Z et al (2012) Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos Sci Technol 72(12):1430–1435

    Article  CAS  Google Scholar 

  40. Kim C-J, Khan W, Park S-Y (2011) Structural evolution of graphite oxide during heat treatment. Chem Phys Lett 511(1–3):110–115

    Article  CAS  Google Scholar 

  41. You F, Wang D, Cao J, Li X, Dang ZM, Hu GH (2014) In situ thermal reduction of graphene oxide in a styrene–ethylene/butylene–styrene triblock copolymer via melt blending. Polym Int 63(1):93–99

    Article  CAS  Google Scholar 

  42. Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63

    Google Scholar 

  43. Bagotia N, Singh BP, Choudhary V, Sharma DK (2015) Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv 5(106):87589–87597

    Article  CAS  Google Scholar 

  44. Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das N (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA–IRGO nanocomposites through the in situ reduction of GO from melt blended EMA–GO composites. Compos B Eng 134:46–60

    Article  CAS  Google Scholar 

  45. Li N, Huang Y, Du F, He X, Lin X, Gao H et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  CAS  Google Scholar 

  46. Park SH, Theilmann P, Yang K, Rao AM, Bandaru PR (2010) The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites. Appl Phys Lett 96(4):1–3

    Google Scholar 

  47. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    Article  CAS  Google Scholar 

  48. Bagotia N, Choudhary V, Sharma D (2018) A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol 29(6):1547–1567

    Article  CAS  Google Scholar 

  49. Bagotia N, Choudhary V, Sharma DK (2017) Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites. Compos B Eng 124:101–110

    Article  CAS  Google Scholar 

  50. Das N, Khastgir D, Chaki T, Chakraborty A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos A Appl Sci Manuf 31(10):1069–1081

    Article  Google Scholar 

  51. Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5(41):32880–32890

    Article  CAS  Google Scholar 

  52. Huang C-Y, Wu C-C (2000) The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites. Eur Polym J 36(12):2729–2737

    Article  CAS  Google Scholar 

  53. Kum CK, Sung Y-T, Han MS, Kim WN, Lee HS, Lee S-J et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol Res 14(4):456–460

    Article  CAS  Google Scholar 

  54. Krueger QJ, King JA (2003) Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6, 6-and polycarbonate-based resins. Adv Polym Technol 22(2):96–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Bagotia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagotia, N., Choudhary, V. & Sharma, D.K. Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites. J Mater Sci 53, 16047–16061 (2018). https://doi.org/10.1007/s10853-018-2749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2749-7

Keywords

Navigation