Skip to main content
Log in

Suzuki–Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Suzuki–Miyaura C–C coupling reactions were investigated with Pd/nitrogen-doped carbon nanotubes (Pd/N-CNTs) as a catalyst. Also, the same catalyst was examined for the solventfree oxidation of benzyl alcohol to benzaldehyde. Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized from 1-ferrocenylmethyl(2-methylimidazole) and benzophenone via a chemical vapour deposition technique. Acetonitrile was used as a solvent and source of both carbon and nitrogen constituents of N-CNTs. Pd nanoparticles (Pd NPs) were successfully dispersed on N-CNTs via a metal organic chemical vapour deposition method. SEM, TEM, XRD, elemental analysis and ICP-OES measurements were used to characterize the nanomaterials. From the TEM analysis, it was observed that Pd NPs were spherical and with particle sizes ranging from 3 to 8 nm. For Suzuki C–C coupling reactions, phenylboronic acid, aryl halide, Pd/N-CNTs catalyst and a base (NaOAc, K2PO4, K2CO3, NaOH, Et3N and Na2CO3) were used. The optimized experiments indicate that K2CO3, as the base, and ethanol/water (1:1 v/v, 10 mL) mixture, as a solvent, are the best reaction conditions. The solventfree oxidation reactions of benzyl alcohol were also done with Pd/N-CNTs catalyst and benzyl alcohol as a substrate. In both sets of reactions, C–C coupling and oxidation, the increase in pyrrolic nitrogen species was found to be responsible for higher catalytic activities of Pd/N-CNT catalysts, and this was attributed to the ease of Pd NP dispersion on N-CNTs, relative to pristine CNTs. Also, the higher catalytic activity of Pd/N-CNTs could be ascribed not only to the smaller Pd NP size or surface area, but to also the surface properties and the nature of the support when compared with the undoped counterpart, Pd/CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T et al (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725

    Article  CAS  Google Scholar 

  2. Koltunov KY, Walspurger S, Sommer J (2004) Superacid and H-zeolite mediated reactions of benzaldehyde with aromatic compounds and cyclohexane. The role of mono-and dicationic intermediates. Catal Lett 98:89–94

    Article  CAS  Google Scholar 

  3. Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal 260:384–386

    Article  CAS  Google Scholar 

  4. Canellas E, Aznar M, Nerín C, Mercea P (2010) Partition and diffusion of volatile compounds from acrylic adhesives used for food packaging multilayers manufacturing. J Mater Chem 20:5100–5109

    Article  CAS  Google Scholar 

  5. Siebel A, Gorlin Y, Durst J, Proux O, Fdr Hasché, Tromp M et al (2016) Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal 6:7326–7334

    Article  CAS  Google Scholar 

  6. Goszewska I, Giziński D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J et al (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68

    Article  CAS  Google Scholar 

  7. Saito Y, Ishitani H, Ueno M, Kobayashi S (2017) Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2-supported palladium catalyst under continuous-flow conditions. ChemistryOpen 6:211–215

    Article  CAS  Google Scholar 

  8. Choudhary H, Jia J, Nishimura S, Ebitani K (2017) Surfactant-assisted Suzuki–Miyaura coupling reaction of unreactive chlorobenzene over hydrotalcite-supported palladium catalyst. Asian J Org Chem 6:274–277

    Article  CAS  Google Scholar 

  9. Kim Y-O, You JM, Jang H-S, Choi SK, Jung BY, Kang O et al (2017) Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett 22:2149–2152

    Article  CAS  Google Scholar 

  10. Choi J, Chan S, Yip G, Joo H, Yang H, Ko FK (2016) Palladium-zeolite nanofiber as an effective recyclable catalyst membrane for water treatment. Water Res 101:46–54

    Article  CAS  Google Scholar 

  11. Choudhary M, Siwal S, Nandi D, Mallick K (2016) Catalytic performance of the in situ synthesized palladium–polymer nanocomposite. New J Chem 40:2296–2303

    Article  CAS  Google Scholar 

  12. Gholinejad M, Bahrami M, Nájera C (2017) A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Mol Catal 433:12–19

    Article  CAS  Google Scholar 

  13. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ et al (2016) Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351:965–968

    Article  CAS  Google Scholar 

  14. Labulo AH, Martincigh BS, Omondi B, Nyamori VO (2017) Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. J Mater Sci 52:9225–9248. https://doi.org/10.1007/s10853-017-1128-0

    Article  CAS  Google Scholar 

  15. Yue D, Liu Y, Shen Z, Zhang L (2006) Study on preparation and properties of carbon nanotubes/rubber composites. J Mater Sci 41:2541–2544. https://doi.org/10.1007/s10853-006-5331-7

    Article  CAS  Google Scholar 

  16. Salvetat J-P, Bonard J-M, Thomson N, Kulik A, Forro L, Benoit W et al (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260

    Article  CAS  Google Scholar 

  17. Nam DH, Cha SI, Lee KM, Jang JH, Park HM, Lee JK et al (2016) Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16:12013–12016

    Article  CAS  Google Scholar 

  18. Qiu H, Shi Z, Guan L, You L, Gao M, Zhang S et al (2006) High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 44:516–521

    Article  CAS  Google Scholar 

  19. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V et al (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21:15872–15884

    Article  CAS  Google Scholar 

  20. Maruyama T, Kondo H, Ghosh R, Kozawa A, Naritsuka S, Iizumi Y et al (2016) Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon 96:6–13

    Article  CAS  Google Scholar 

  21. Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7:16953–16959

    Article  CAS  Google Scholar 

  22. Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841

    Article  CAS  Google Scholar 

  23. Meemken F, Baiker A (2017) Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chem Rev 117:11522–11569

    Article  CAS  Google Scholar 

  24. Martin-Martinez M, Ribeiro RS, Machado BF, Serp P, Morales-Torres S, Silva AM et al (2016) Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application. ChemCatChem 8:2068–2078

    Article  CAS  Google Scholar 

  25. Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi Cd, Chizari K et al (2012) 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134:9672–9680

    Article  CAS  Google Scholar 

  26. Xia W (2016) Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal Sci Technol 6:630–644

    Article  CAS  Google Scholar 

  27. Old DW, Wolfe JP, Buchwald SL (1998) A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J Am Chem Soc 120:9722–9723

    Article  CAS  Google Scholar 

  28. Heidenreich RG, Krauter JG, Pietsch J, Köhler K (2002) Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon. J Mol Catal A: Chem 182:499–509

    Article  Google Scholar 

  29. Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74

    Article  CAS  Google Scholar 

  30. Yan Y, Jia X, Yang Y (2016) Palladium nanoparticles supported on CNT functionalized by rare-earth oxides for solventfree aerobic oxidation of benzyl alcohol. Catal Today 259:292–302

    Article  CAS  Google Scholar 

  31. Maniam KK, Chetty R (2015) Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation. J Appl Electrochem 45:953–962

    Article  CAS  Google Scholar 

  32. He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55:12582–12594

    Article  CAS  Google Scholar 

  33. Ombaka LM, Ndungu PG, Kibet J, Nyamori VO (2017) The effect of pyridinic-and pyrrolic-nitrogen in nitrogen-doped carbon nanotubes used as support for Pd-catalyzed nitroarene reduction: an experimental and theoretical study. J Mater Sci 52:10751–10765. https://doi.org/10.1007/s10853-017-1241-0

    Article  CAS  Google Scholar 

  34. Ding Y, Zhang L, Wu K-H, Feng Z, Shi W, Gao Q et al (2016) The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. J Colloid Interface Sci 480:175–183

    Article  CAS  Google Scholar 

  35. L-l Wang, L-p Zhu, N-c Bing, L-j Wang (2017) Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J Phys Chem Solids 107:125–130

    Article  CAS  Google Scholar 

  36. Li M, Xu F, Li H, Wang Y (2016) Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal Sci Technol 6:3670–3693

    Article  CAS  Google Scholar 

  37. Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2016) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154

    Article  CAS  Google Scholar 

  38. Zuo P, Duan J, Fan H, Qu S, Shen W (2018) Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl Surf Sci 435:1020–1028

    Article  CAS  Google Scholar 

  39. Ding S, Zhang C, Liu Y, Jiang H, Chen R (2017) Selective hydrogenation of phenol to cyclohexanone in water over Pd@ N-doped carbons derived from ZIF-67: role of dicyandiamide. Appl Surf Sci 425:484–491

    Article  CAS  Google Scholar 

  40. Deng D-S, Han G-Q, Zhu X, Xu X, Gong Y-T, Wang Y (2015) Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst. Chin Chem Lett 26:277–281

    Article  CAS  Google Scholar 

  41. Ombaka LM, Ndungu PG, Nyamori VO (2015) Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Adv 5:109–122

    Article  CAS  Google Scholar 

  42. Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80

    Article  CAS  Google Scholar 

  43. Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT et al (2008) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49

    Article  CAS  Google Scholar 

  44. Futaba DN, Hata K, Namai T, Yamada T, Mizuno K, Hayamizu Y et al (2006) 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J Phys Chem B 110:8035–8038

    Article  CAS  Google Scholar 

  45. Duan X, Xiao M, Liang S, Zhang Z, Zeng Y, Xi J et al (2017) Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon 119:326–331

    Article  CAS  Google Scholar 

  46. He P, Du Y, Wang S, Cao C, Wang X, Pang G et al (2013) Synthesis, structure, and reactivity of ferrocenyl-NHC palladium complexes. Z Anorg Allg Chem 639:1004–1010

    Article  CAS  Google Scholar 

  47. Oosthuizen RS, Nyamori VO (2012) Heteroatom-containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials. Appl Organomet Chem 26:536–545

    Article  CAS  Google Scholar 

  48. Naidoo Q-L, Naidoo S, Petrik L, Nechaev A, Ndungu P (2012) The influence of carbon based supports and the role of synthesis procedures on the formation of platinum and platinum-ruthenium clusters and nanoparticles for the development of highly active fuel cell catalysts. Int J Hydrogen Energy 37:9459–9469

    Article  CAS  Google Scholar 

  49. Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751

    Article  CAS  Google Scholar 

  50. Kumar N, Yu Y-C, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51:2320–2329. https://doi.org/10.1007/s10853-015-9540-9c

    Article  CAS  Google Scholar 

  51. Dubal DP, Chodankar NR, Caban-Huertas Z, Wolfart F, Vidotti M, Holze R et al (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sources 308:158–165

    Article  CAS  Google Scholar 

  52. Mao H, Shen Y, Zhang Q, Ulaganathan M, Zhao S, Yang Y et al (2016) Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon. Carbon 96:75–82

    Article  CAS  Google Scholar 

  53. Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL et al (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753

    Article  CAS  Google Scholar 

  54. Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe JM, Toury B et al (2005) Synthesis of boron nitride with ordered mesostructure. Adv Mater 17:571–574

    Article  CAS  Google Scholar 

  55. Vanyorek L, Meszaros R, Barany S (2014) Surface and electrosurface characterization of surface-oxidized multi-walled N-doped carbon nanotubes. Colloids Surf A Physicochem Eng Asp 448:140–146

    Article  CAS  Google Scholar 

  56. Misra A, Tyagi PK, Singh MK, Misra D (2006) FTIR studies of nitrogen doped carbon nanotubes. Diamond Rel Mater 15:385–388

    Article  CAS  Google Scholar 

  57. Vinu A, Srinivasu P, Sawant DP, Mori T, Ariga K, Chang J-S et al (2007) Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume. Chem Mater 19:4367–4372

    Article  CAS  Google Scholar 

  58. Mane GP, Talapaneni SN, Lakhi KS, Ilbeygi H, Ravon U, Al-Bahily K et al (2017) Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew Chem Int Ed 56:8481–8485

    Article  CAS  Google Scholar 

  59. Lazar G, Lazar I (2003) IR characterization of a C:H:N films sputtered in Ar/CH4/N2 plasma. J Non-Cryst Solids 331:70–78

    Article  CAS  Google Scholar 

  60. Vikkisk M, Kruusenberg I, Ratso S, Joost U, Shulga E, Kink I et al (2015) Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv 5:59495–59505

    Article  CAS  Google Scholar 

  61. Tan X, Wu X, Hu Z, Ma D, Shi Z (2017) Synthesis and catalytic activity of palladium supported on heteroatom doped single-wall carbon nanohorns. RSC Adv 7:29985–29991

    Article  CAS  Google Scholar 

  62. Koós AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37

    Article  CAS  Google Scholar 

  63. Xie K, Xia W, Masa J, Yang F, Weide P, Schuhmann W et al (2016) Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. J Energy Chem 25:282–288

    Article  Google Scholar 

  64. Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/macroporous nitrogen-doped carbon architectures with Iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27:2521–2527

    Article  CAS  Google Scholar 

  65. Kotakoski J, Krasheninnikov A, Ma Y, Foster AS, Nordlund K, Nieminen RM (2005) B and N ion implantation into carbon nanotubes: insight from atomistic simulations. Phys Rev B 71:205408

    Article  CAS  Google Scholar 

  66. Sjöström H, Stafström S, Boman M, Sundgren J-E (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75:1336

    Article  Google Scholar 

  67. Ewels C, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5:1345–1363

    Article  CAS  Google Scholar 

  68. Chizari K, Sundararaj U (2014) The effects of catalyst on the morphology and physicochemical properties of nitrogen-doped carbon nanotubes. Mater Lett 116:289–292

    Article  CAS  Google Scholar 

  69. Sharifi T, Nitze F, Barzegar HR, Tai C-W, Mazurkiewicz M, Malolepszy A et al (2012) Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50:3535–3541

    Article  CAS  Google Scholar 

  70. Shan C, Zhao W, Lu XL, O’Brien DJ, Li Y, Cao Z et al (2013) Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett 13:5514–5520

    Article  CAS  Google Scholar 

  71. Latorre N, Romeo E, Cazana F, Ubieto T, Royo C, Villacampa J et al (2010) Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model. J Phys Chem C 114:4773–4782

    Article  CAS  Google Scholar 

  72. Li R, Zhang P, Huang Y, Zhang P, Zhong H, Chen Q (2012) Pd–Fe3O4@ C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J Mater Chem 22:22750–22755

    Article  CAS  Google Scholar 

  73. Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176

    Article  CAS  Google Scholar 

  74. Radkevich V, Senko T, Wilson K, Grishenko L, Zaderko A, Diyuk V (2008) The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Appl Catal A Gen 335:241–251

    Article  CAS  Google Scholar 

  75. Chen Y, Wang J, Liu H, Banis MN, Li R, Sun X et al (2011) Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115:3769–3776

    Article  CAS  Google Scholar 

  76. Hachimi A, Merzougui B, Hakeem A, Laoui T, Swain GM, Chang Q et al (2015) Synthesis of nitrogen-doped carbon nanotubes using injection-vertical chemical vapor deposition: effects of synthesis parameters on the nitrogen content. J Nanomater 16:425

    Google Scholar 

  77. Morjan I, Morjan I, Ilie A, Scarisoreanu M, Gavrila L, Dumitrache F et al (2017) The study of nitrogen inclusion in carbon nanotubes obtained by catalytic laser-induced chemical vapour deposition (C-LCVD). Appl Surf Sci 425:440–447

    Article  CAS  Google Scholar 

  78. Hsiao C-H, Lin J-H (2017) Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts. Carbon 124:637–641

    Article  CAS  Google Scholar 

  79. Bulusheva L, Okotrub A, Fedoseeva YV, Kurenya A, Asanov I, Vilkov O et al (2015) Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys Chem Chem Phys 17:23741–23747

    Article  CAS  Google Scholar 

  80. Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782

    Article  CAS  Google Scholar 

  81. ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Mater 5:2874–2902

    Article  CAS  Google Scholar 

  82. Du J, Zhao R, Jiao G (2013) The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. Int J Hydrogen Energy 38:5789–5795

    Article  CAS  Google Scholar 

  83. Zhao Y, Li C-H, Yu Z-X, Yao K-F, Ji S-F, Liang J (2007) Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Mater Chem Phys 103:225–229

    Article  CAS  Google Scholar 

  84. Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Ghani K (2009) Alkene epoxidation catalyzed by molybdenum supported on functionalized MCM-41 containing N–S chelating Schiff base ligand. Catal Commun 10:853–858

    Article  CAS  Google Scholar 

  85. Kotal M, Bhowmick AK (2013) Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J Phys Chem C 117:25865–25875

    Article  CAS  Google Scholar 

  86. Huang H, Leung DY (2011) Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal 1:348–354

    Article  CAS  Google Scholar 

  87. H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377

    Article  CAS  Google Scholar 

  88. Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv 6:39933–39939

    Article  CAS  Google Scholar 

  89. Artok L, Bulut H (2004) Heterogeneous Suzuki reactions catalyzed by Pd (0)–Y zeolite. Tetrahedron Lett 45:3881–3884

    Article  CAS  Google Scholar 

  90. Pourkhosravani M, Dehghanpour S, Farzaneh F (2016) Palladium nanoparticles supported on zirconium metal organic framework as an efficient heterogeneous catalyst for the Suzuki–Miyaura coupling reaction. Catal Lett 6:499–508

    Article  CAS  Google Scholar 

  91. Primo A, Liebel M, Fo Quignard (2009) Palladium coordination biopolymer: a versatile access to highly porous dispersed catalyst for Suzuki reaction. Chem Mater 21:621–627

    Article  CAS  Google Scholar 

  92. Arrigo R, Wrabetz S, Schuster ME, Wang D, Villa A, Rosenthal D et al (2012) Tailoring the morphology of Pd nanoparticles on CNTs by nitrogen and oxygen functionalization. Phys Chem Chem Phys 14:10523–10532

    Article  CAS  Google Scholar 

  93. Deraedt C, Astruc D (2013) “Homeopathic” palladium nanoparticle catalysis of cross carbon–carbon coupling reactions. Acc Chem Res 47:494–503

    Article  CAS  Google Scholar 

  94. Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A: Chem 230:97–105

    Article  CAS  Google Scholar 

  95. Alonso-Morales N, Ruiz-Garcia C, Palomar J, Heras F, Calvo L, Rodriguez JJ et al (2017) Hollow nitrogen-or boron-doped carbon submicrospheres with a porous shell: preparation and application as supports for hydrodechlorination catalysts. Ind Eng Chem Res 56:7665–7674

    Article  CAS  Google Scholar 

  96. Bidabehere CM, García JR, Sedran U (2017) Transient effectiveness factor in porous catalyst particles. Application to kinetic studies with batch reactors. Chem Eng Res Des 118:41–50

    Article  CAS  Google Scholar 

  97. Dong Y, Wu X, Chen X, Wei Y (2017) N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction. Carbohydr Polym 160:106–114

    Article  CAS  Google Scholar 

  98. Dong W, Zhang L, Wang C, Feng C, Shang N, Gao S et al (2016) Palladium nanoparticles embedded in metal–organic framework derived porous carbon: synthesis and application for efficient Suzuki–Miyaura coupling reactions. RSC Adv 6:37118–37123

    Article  CAS  Google Scholar 

  99. Kwon TH, Cho KY, Baek K-Y, Yoon HG, Kim BM (2017) Recyclable palladium–graphene nanocomposite catalysts containing ionic polymers: efficient Suzuki coupling reactions. RSC Adv 7:11684–11690

    Article  CAS  Google Scholar 

  100. Veisi H, Azadbakht R, Saeidifar F, Abdi MR (2017) Schiff base-functionalized multi walled carbon nano tubes to immobilization of palladium nanoparticles as heterogeneous and recyclable nanocatalyst for Suzuki reaction in aqueous media under mild conditions. Catal Lett 147:976–986

    Article  CAS  Google Scholar 

  101. Hajighorbani M, Hekmati M (2016) Pd nanoparticles deposited on isoniazid grafted multi walled carbon nanotubes: synthesis, characterization and application for Suzuki reaction in aqueous media. RSC Adv 6:88916–88924

    Article  CAS  Google Scholar 

  102. Zhang A, Liu M, Liu M, Xiao Y, Li Z, Chen J et al (2014) Homogeneous Pd nanoparticles produced in direct reactions: green synthesis, formation mechanism and catalysis properties. J Mater Chem A 2:1369–1374

    Article  CAS  Google Scholar 

  103. Yu L, Han Z (2016) Palladium nanoparticles on polyaniline (Pd@ PANI): a practical catalyst for Suzuki cross-couplings. Mater Lett 184:312–314

    Article  CAS  Google Scholar 

  104. Ji R, Zhai S-R, Meng Y-Y, Xiao Z-Y, An Q-D (2017) Deposition of N-doped carbon layers inside acidic ZrSBA-15: significant enhancement of catalytic performance of Pd NPs toward benzyl alcohol aerobic oxidation. J Sol-Gel Sci Technol 84:180–191

    Article  CAS  Google Scholar 

  105. Li Y, Huang J, Hu X, Lam FL-Y, Wang W, Luque R (2016) Heterogeneous Pd catalyst for mild solventfree oxidation of benzyl alcohol. J Mol Catal A: Chem 425:61–67

    Article  CAS  Google Scholar 

  106. Hao Y, Wang S, Sun Q, Shi L, Lu A-H (2015) Uniformly dispersed Pd nanoparticles on nitrogen-doped carbon nanospheres for aerobic benzyl alcohol oxidation. Chin J Catal 36:612–619

    Article  CAS  Google Scholar 

  107. Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L (2006) Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal 244:113–121

    Article  CAS  Google Scholar 

  108. Marco Y, Roldán L, Armenise S, García-Bordejé E (2013) Support-induced oxidation state of catalytic Ru nanoparticles on carbon nanofibers that were doped with heteroatoms (O, N) for the decomposition of NH3. ChemCatChem 5:3829–3834

    Article  CAS  Google Scholar 

  109. Puthiaraj P, Pitchumani K (2014) Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki–Heck cross coupling reaction. Green Chem 16:4223–4233

    Article  CAS  Google Scholar 

  110. Chang F, Guo J, Wu G, Liu L, Zhang M, He T et al (2015) Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Adv 5:3605–3610

    Article  CAS  Google Scholar 

  111. Bell TE, Zhan G, Wu K, Zeng HC, Torrente-Murciano L (2017) Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports. Top Catal 60:1251–1259

    Article  CAS  Google Scholar 

  112. Tessonnier J-P, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47:1779–1798

    Article  CAS  Google Scholar 

  113. Hao Y, Qingwen L, Jin Z, Zhongfan L (2003) The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile. Chem Phys Lett 380:347–351

    Article  CAS  Google Scholar 

  114. Wang J, Huang R, Feng Z, Liu H, Su D (2016) Multi-walled carbon nanotubes as a catalyst for gas-phase oxidation of ethanol to acetaldehyde. Chemsuschem 9:1820–1826

    Article  CAS  Google Scholar 

  115. Abdullahi I, Davis TJ, Yun DM, Herrera JE (2014) Partial oxidation of ethanol to acetaldehyde over surface-modified single-walled carbon nanotubes. Appl Catal A Gen 469:8–17

    Article  CAS  Google Scholar 

  116. Shinde VM, Skupien E, Makkee M (2015) Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol. Catal Sci Technol 5:4144–4153

    Article  CAS  Google Scholar 

  117. Wilson D, Langell M (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Research Foundation (NRF) South Africa, Grant Number 103979. We are grateful to the School of Chemistry and Physics, University of KwaZulu-Natal (UKZN), for creating a conducive research laboratory for this work. Ayomide is grateful to Mrs Rashidat Labulo and Dr Moses Ollengo for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Nyamori.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labulo, A.H., Omondi, B. & Nyamori, V.O. Suzuki–Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst. J Mater Sci 53, 15817–15836 (2018). https://doi.org/10.1007/s10853-018-2748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2748-8

Keywords

Navigation